Введение

Целью данного курсового проекта является расчет параметров структуры транзистора и определение технологических режимов ее изготовления.

По заданным параметрам структуры транзистора выбирается технологический маршрут изготовления. Определяются технологические режимы эпитаксиального наращивания, имплантации, длительность и температура диффузии, рассчитываются профили распределения примеси.

В курсовом проекте рассматривается задача синтеза структуры транзистора с использованием расчетных соотношений и параметров материалов, применяемых в его производстве.

Экономический расчет проекта не проводился.

Новизны в работе нет, так как проектирование проводилось по материалам учебной литературы.


Реферат

Пояснительная записка содержит 17 рисунков, 1 таблицу, приложение. При написании проекта использовался 1 источник.

Перечень ключевых слов: транзистор, диффузия, имплантация, легирующая примесь, p-n-переход, удельное сопротивление, напряжение лавинного пробоя, профиль распределения, температура, коэффициент диффузии, кремний, технологический режим.

Объект разработки: структура кремниевого эпитаксиально-планарного n-p-n транзистора.

Цель работы: расчет параметров структуры транзистора и определение технологических режимов ее изготовления.

Метод разработки: аналитический расчет.

Полученные результаты: xjСС = 8,49 мкм, hЭС 6 мкм, ЭС = 0,4 Ом*см, xjРД = 7,062 мкм, xjКБ = 3 мкм, xjЭБ = 2,3 мкм, cc = 3 мкм.

Степень внедрения: не внедрено.

Рекомендации по внедрению: нет.

Эффективность: не рассчитывалась.

Основные конструктивные и технико-эксплутационные характеристики: VКБ = 120 В, Wа = 0,8 мкм, материал подложки – ЭКДБ-10, ЭС = 0,4 Ом*см.

Область применения: расчет кремниевых эпитаксиально-планарных транзисторов.


Содержание

Введение

1.  Определение режимов имплантации и термической диффузии

2.  Имплантированных ионов сурьмы для создания в подложке скрытого слоя

3.  Определение удельного сопротивления эпитаксиального слоя

4.  Определение толщины эпитаксиального слоя

5.  Определение режимов эпитаксии

6.  Определение режимов разделительной диффузии

7.  Определение режимов базовой диффузии

8.  Определение режимов эмиттерной диффузии

9.  Проверка величины размывания скрытого слоя в процессе последующих диффузий

10. Последовательность процессов при производстве ИМС

Заключение

Список использованных источников


1. Определение режимов имплантации и термической диффузии имплантированных ионов сурьмы для создания в подложке скрытого слоя

Определяем параметры скрытого слоя (СС). Поскольку параметры СС в задании на курсовой проект не указаны, то мы воспользуемся стандартными технологическими режимами, используемыми в изготовлении ИМС. Скрытый слой формируется путем имплантации ионов сурьмы с последующей термической диффузией имплантированных ионов.

Стандартный режим имплантации следующий:

Ф = 500 мкКл/см2 – доза облучения;

Е = 50 кэВ – энергия имплантированных ионов.

Термическая диффузия имплантированных ионов сурьмы Sb+ проводится по режимам:

ТСС = 1220 0С;

tСС = 12 ч.

Распределение атомов сурьмы после диффузии определяется следующим выражением:

, (1.1)

где Q – количество ионов примеси на единицу поверхности, см-2; x – глубина, соответствующая данной концентрации, см; D – коэффициент диффузии примеси, см2/c; t – длительность диффузии, с.

Выразим дозу в количестве частиц, внедренных на единицу поверхности:

Q = 6,25*1012*Ф.  (1.2)


В нашем случае Q = 6,25*1012*500 = 3,125*1015 см-2.

С помощью рис. 9.5, а [1] определим коэффициент диффузии сурьмы в кремнии при температуре ТСС = 1220 0С. Заданной температуре соответствует коэффициент D = 4,5*10-13 см2/c.

Глубина залегания p-n-перехода CC–подложка описывается выражением:

, (1.3)

где N0 – величина концентрации примеси на поверхности легированного слоя, т.е. при x = 0; NП – концентрация примеси в исходной подложке.

Концентрация примеси N0 определяется на основе соотношения:

(1.4)

В нашем случае

 см-3.

В стандартной конструкции микросхем используются кремниевые подложки с удельным сопротивлением  = 10 Ом*см. По графику зависимости концентрации примеси от удельного сопротивления рис. 6.4 [1] находим, что удельному сопротивлению  = 10 Ом*см соответствует концентрация примеси: NП = 1,2*1015 см-3.

С учетом полученных результатов глубину залегания p-n-перехода определяем по формуле (1.3):


  8,49*10-4 см = 8,49 мкм.


Информация о работе «Расчет параметров структуры интегрального n-p-n транзистора и определение технологических режимов его изготовления»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 16572
Количество таблиц: 1
Количество изображений: 12

Похожие работы

Скачать
23592
0
10

... связью (ПЗС), на которых могут быть построены сдвиговые регистры, запоминающие устройства и некоторые логические элементы. 3. Причины ограничивающие минимальные размеры интегральных микросхем Для выбранной структуры ИМС минимальные размеры элементов ИМС в целом зависят от возможностей фотолитографического процесса, которые характеризуются тремя основными параметрами: 1) минимальным размером ...

Скачать
33382
1
0

... (1.6.3), (1.6.5) могут быть решены относительно неизвестных lp0, и ln0, после чего из (1.6.4) определяется максимальное поле p-n-перехода. 1.7. Расчет параметров ступенчатого p-n-перехода. Наиболее просто определяется параметры ступенчатого p-n-перехода, так как в этом случае функция N(x) имеет вид: (1.7.1) а значение граничных условий концентрации ...

Скачать
80695
0
0

... коэффициенты линейного расширения материалов подложек, корпусов и вспомогательных материалов должны быть согласованы для обеспечения работы микросхем при повышенных уровнях мощности. Конструирование СВЧ микросхем включает расчет и проектирование изделия по заданным электрическим параметрам с учетом процессов сборки и регулировки. При этом определяют вариант схемы узла, материал и геометрические ...

Скачать
31231
1
6

... – это законченный элемент ИМС, который можно использовать при проектировании аналоговых микросхем. 1 Общие принципы построения топологии биполярных Имс Общего подхода к проектированию биполярных интегральных микросхем нет и быть не может, каждый тип характеризуется своими особенностями в зависимости от требований и исходных данных ИМС. Исходными данными при конструировании микросхем являются: ...

0 комментариев


Наверх