1.4 Генератори коливань
Електронні ланцюги, в яких періодичні зміни напруги та струму виникають без прикладення до них додаткових періодичних сигналів, називаються автономними автоколивальними ланцюгами, а пристрої, виконані на їх основі, – автогенераторами або генераторами коливань відповідної форми. Ці ланцюги треба розглядати як перетворювачі енергії джерела живлення постійного струму в енергію періодичних коливань.
Автогенератори можна розділяти на генератори імпульсів і генератори синусоїдальних коливань. Генератори імпульсів в залежності від форми вихідної напруги ділять на генератори: напруги прямокутної форми (ГПН); напруги експоненціальної форми; напруги, що лінійно змінюється (ГЛЗН); напруги трикутної форми; ступінчастої напруги; імпульсів, вершина яких має дзвіноподібну форму (блокінг–генератор).
Генератори синусоїдальних коливань класифікують по типу коливальної системи і ділять на: автогенератори; автогенератори; генератори з кварцовою стабілізацією частоти; генератори з електромеханічними резонансними системами стабілізації частоти.
Для отримання незатухаючих коливань у всіх названих автогенераторах використовуються компоненти електроніки, на вольт–амперних характеристиках яких мається або створена за допомогою ланцюга додатного ЗЗ ділянка з від’ємним диференціальним опором. В більшості автогенераторів використовуються електронні підсилювачі з додатнім ЗЗ.
При додатному ЗЗ, коли фазовий зсув по петлі підсилювач–ланцюг зворотного зв’язку рівний нулю та , підсилювач втрачає стійкість. Якщо в ланцюгу підсилювача або ланцюгу ЗЗ нема елементу накопичуючого електричну енергію, то підсилювач з додатнім ЗЗ перетворюється в тригер і має стійкі стани.
При наявності в петлі підсилювач–ланцюг зворотного зв’язку елементу, накопичуючого енергію, наприклад конденсатора, підсилювач з додатнім ЗЗ не має жодного стійкого стані генерує періодично змінюючюся напругу. Генератори імпульсів, що складаються з широкосмугових електронних підсилювачів, охоплених додатнім зворотнім зв’язком, глибина котрого залишається майже постійною у широкій смузі частот, і мають в петлі зворотного зв’язку елементи, що накопичують енергію, називаються мультивібраторами.
2. Розрахункова частина
2.1 Підсилювальні каскади на біполярних транзисторах
2.1.1 Завдання
Таблиця 2.1
Номер варіанту | Схема включення | , | , | () | , | , | Тип транзистора |
5 | ЗЕ, ЗК | 250 | 120 | 1,2 | 20 | 1,5 | МП39 |
Напруга живлення схеми .
Схеми підсилювальних каскадів зображені на рис. 2.1.
2.1.2 Методика розрахунку
2.1.2.1 Транзистор обирається з вимоги забезпечення необхідної амплітуди вихідного сигналу і смуги пропускання при заданій вихідній напрузі та коефіцієнті частотних спотворень в області верхніх частот :
; ,
де – максимально допустима напруга на колекторі.
В табл. 2.2 наведені параметри обраного транзистора МП39.
Таблиця 2.2
Параметр | Значення |
12 | |
, | |
, | |
, | |
, | 25 |
, | |
, | |
, | 10 |
, | |
, | |
, | |
, | |
, | 20 |
, | 150 |
, | 150 |
2.1.2.2 Опір резисторів , , і допустима ємність конденсатора навантаження обираються з умови:
;
,
де – максимально допустимий струм колектора у режимі підсилення. В даному випадку треба взяти таке значення , щоб струм робочої точки не перевищив максимально допустимого значення постійного струму колектора для даного транзистора.
Таким чином:
,
; ,
обираємо
, .
Тоді можна розрахувати ємність конденсаторів
;
.
2.1.2.3 На родині вихідних характеристик транзистора будується лінія навантаження по постійному струму і визначається положення точки спокою (, , , ) для режиму класу (рис. 2.2). На родині вхідних характеристик транзистора по , визначається напруга початкового зміщення , (рис. 2.3).
Робоча точка :
; ; ; , ; ; .
При розрахунках необхідно брати значення не враховуючи знак.
2.1.2.4. Опір резисторів , , , що забезпечують початкове зміщення фіксованим струмом бази (емітера для ЗБ)
,
;
,
.
2.1.2.5 Ємність роздільних конденсаторів , визначається з умови забезпечення заданого коефіцієнту частотних спотворень на нижніх частотах :
; ; ;
,
де , .
Розрахунок ємностей роздільних конденсаторів. Спочатку необхідно виконати розрахунок допоміжних параметрів:
, ; , ;
, ; ;
.
Розрахунок ємностей:
, ;
, ;
, ;
, .
2.1.3 Кінцеві схеми з вказаними номіналами елементів.
Схеми зображені на рис. 2.4.
2.1.4 Висновки
Дані схеми є досить простими: в них немає стабілізації режиму транзисторів та іншого. Через це вони мають обмежене застосування в підсилювачах.
2.2 Активні RC–фільтри нижніх частот
2.2.1 Завдання
Частота зрізу .
Схеми фільтрів наведені на рис. 2.5.
2.2.2 Методика розрахунку
Параметри компонентів схеми для фільтрів нижніх частот 1–го порядку
, обираємо ;
, ;
.
Для фільтрів нижніх частот 2–го порядку
, обираємо ;
, ;
, ;
; , .
В якості операційного підсилювача можна взяти модель К140УД9.
... ється в p і n областях: lp-n = lp + ln: , звідси , де ε – відносна діелектрична проникність матеріалу напівпровідника; ε0 — діелектрична постійна вільного простору. Товщина електронно-діркових переходів має порядок (0,1-10)мкм. Якщо , то і p-n-перехід називається симетричним, якщо , то і p-n-перехід називається несиметричним, причому він в основному розташовується у області напі ...
... 4. Як графічно позначаються польові транзистори? Інструкційна картка №9 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки» І. Тема: 2 Електронні прилади 2.4 Електровакуумні та іонні прилади Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумово ...
... і ключі реалізовані із зворотними зв’язками на діодах Шоткі. Це дозволило значно підвищити швидкодію схем і є зараз основою надвеликих інтегральних схем, які в свою чергу є базою всієї комп'ютерної електроніки. Окрім цього використовуються елементи емітерно-зв’язної логіки (ЕЗЛ) (на основі диференційних каскадів струмових ключів), n-, p- МОН логіка (на польових транзисторах) та комплементарна ...
... Uбе,В Розрахунок резонансного підсилювача потужності 1. Визначимо ємність активної області колекторного переходу. Ска=Ск/(1+Кс) = ...
0 комментариев