3. Структурные уровни
Структурное дробление конструкции даёт экономические преимущества при разработке, производстве и эксплуатации ЭС и преследует три цели:
1) параллельное конструирование частей;
2) параллельное изготовление частей;
3) повышение ремонтопригодности.
Параллельное конструирование частей, входящих в конструкцию, значительно ускоряет процесс конструирования. Оно возможно благодаря выполнению условий размерной совместимости, предусматривающей взаимное назначение для сопрягаемых частей габаритных и присоединительных размеров, а также совмещаемых электрических параметров в пределах предусмотренных допусков. Параллельное изготовление частей, входящих в различные структурные уровни, идёт по независимым производственным циклам, соприкасающимся только при сборке конструкции. Это ускоряет производство в десятки раз. Ремонтопригодность при эксплуатации повышается благодаря упрощению поиска неисправностей и возможности ремонта агрегатным способом, т.е. путём замены крупных частей. В дальнейшем возможен ремонт этих частей.
Каждая конструкция ЭС в зависимости от назначения имеет свою, присущую ей конкретную структуру. Однако требования стандартизации налагают ограничительные рамки на это разнообразие. Можно представить некоторую обобщённую таковую структуру и на её основе рассмотреть в общем виде основные структурные особенности, справедливые в принципе для всех конструкций.
Типовая структура конструкции современных ЭС состоит из электрической базы как исходного функционального материала и четырёх уровней, от нулевого до третьего, из которых нулевой и первый называются низшими, а второй и третий – высшими.
Элементная база состоит из электрорадиоизделий (ЭРИ), входящих в перечень элементов электрической принципиальной схемы ЭС ( или частей ) как комплектующие изделия. ЭРИ включают в себя следующие классы:
1) электрорадиоэлементы (ЭРЭ) – дискретные резисторы, конденсаторы, кварцевые фильтры и т.п., моточные изделия ( трансформаторы, дроссели, катушки индуктивности, электромагнитные линии задержки и др.) ;
2) электровакуумные изделия (ЭВИ) – радиолампы, электронно-лучевые приборы, электрические световые табло и т.п.;
3) полупроводниковые приборы (ППП) – транзисторы, тиристоры и т.д.;
4) интегральные схемы (ИС) ;
5) изделия электропривода и автоматизации (ИЭПА);
6) контрольно-измерительные приборы (КИП);
7) коммутационные изделия (КИ);
8) микропроцессорные компоненты (МПК);
9) волоконно – оптические кабели с соединителями ( ВОКС ).
Элементная база – ещё не конструкция ЭС. Конструкция начинается с функционального узла. Функциональный узел представляет собой первичное структурное образование и относится к нулевому структурному уровню. Существуют три разновидности функциональных узлов: микросборки, печатные узлы и гибридно-интегральные узлы.
Микросборки относят к подуровню нулевого уровня структуры РЭС. Они входят в состав печатных узлов ( корпусные микросборки ) и гибридно-интегральных узлов ( бескорпусные микросборки ).
Схема структуры ЭС имеет две параллельные ветви: по печатному ( левая часть схемы ) и гибридно-интегральному исполнению узлов ( правая часть ). В современных ЭС находят применение оба конструктивно-технологические исполнения.
Первый уровень состоит из модулей, второй из блоков, а третий представляет собой окончательно оформленную конструкцию РЭС в целом, т.е. самостоятельное в эксплуатационном отношении изделие в виде сборочной единицы.
В зависимости от сложности конструкции ЭС различают комплексы, системы, радиоэлектронные устройства ( РЭУ ), блоки, функциональные узлы ( ФУ ),детали. Такое деление отличается от положениями ЕСТД (комплексы-сборочные единицы-детали ); однако на практике оно наиболее распространено.
4. Классификация электронных средств
Классификация ЭС по отдельным признакам, например назначению, объекту установки и условиям эксплуатации определена давно и достаточно строго, а по функционально конструктивным признакам опять – таки в разных источниках многовариантна. Можно привести много примеров, где одним и тем же термином обозначаются совершенно разные по своим функциям и конструктивной сложности изделия: полупроводниковый прибор (транзистор) и измерительный прибор (вольтметр ламповый); импульсное устройство (триггер) – радиоприёмное устройство (транзисторный приёмник); блок конденсаторов переменной ёмкости – блок индикатора кругового обзора и т.д. Поэтому остановимся на видах классификации ЭС по следующим признакам:
- по функциональной сложности, т.е. по числу и рангу функций, выполняемых изделием;
- конструктивной сложности, определяемой числом элементов конструкции и числом соединений между ними, выбранной элементной базой и способом компоновки;
- назначению;
- объекту установки;
- виду сигнала и диапазону частот.
По функциональной сложности деление, например ЭС может быть представлено в виде следующей цепочки ( сверху вниз ): радиотехническая система – комплекс радиоэлектронных устройств – радиоэлектронное устройство ( РЭУ ) – блок – субблок – функциональный узел.
Радиотехническая система представляет собой совокупность сигналов в пространстве, операторов и радиоэлектронной аппаратуры, размещённых на объектах в определённых точках на поверхности или в пространстве, действующих в условиях помех и внешних возмущений, *)например, система посадки самолёта.
Комплекс радиоэлектронных устройств – совокупность РЭУ, объединённых, как правило, на одном объекте и являющихся законченной частью, например наземный и бортовой комплекс радиосвязи самолёта с землёй.
Радиоэлектронное устройство - часть комплекса, решающая основную целевую функцию, функционально и конструктивно законченная и, главное, автономно эксплуатируемая, например телевизионный приёмник с антенной.
Определение блока, субблока, функционального узла смотри в разделе терминологии ЭС.
По конструктивной сложности, определяемой выражением:
С=k1(k2N+k3M), (1)
где k1 – масштабный (нормирующий) коэффициент относительно конструкции прототипа,
k2,k3 – весовые коэффициенты, учитывающие вероятности отказов элементов и соединений,
N, M – число схемных элементов и соединений между ними, соответственно электронные средства, подразделяют на много – и моноблочные конструкции, функциональные ячейки, микросборки, микросхемы и функциональные компоненты.
Многоблочные конструкции выполняют в виде шкафов, стоек, пультов, моноблочные – виде контейнеров или отдельных корпусированных приборов, функциональные ячейки – в виде сборок ЭРЭ и корпусированных ИС на печатных платах или сборок из МСБ на металлических рамках. Микросхемы и функциональные компоненты ( оптроны, интегральные пьезофильтры, фильтры ПАВ, джозефсоновские приборы, приборы на ПЗС и ЦМД и др.) часто корпусируются и представляют собой изделия электронной техники, выпускаемые для широкого применения Минэлектронприбором. В совокупности они образуют элементную базу современных ЭС.
По назначению ЭС делят на средства:
- радиовещания и телевидения;
- радиоуправления и телеметрии;
- радиоастрономии;
- радиоизмерительные;
- обработки данных и информации;
- записи и воспроизведения;
- медицинские и промышленные ЭС.
По объекту установки они классифицируются на три основных категории, в каждой из которых существуют группы, а именно бортовые (самолётные, космические, ракетные), наземные (возимые, носимые, переносные, бытовые, стационарные) и морские (судовые, буйковые).
По виду сигнала и диапазону частот они могут быть аналоговыми, цифровыми и СВЧ.
В заключение отметим, что ЭС, а в частности РЭС может принимать различные конструктивные формы в зависимости от его функциональной сложности и системы интеграции используемых в нём ИС. Например, при высокой степени интеграции и соответствующей функциональной сложности ( свыше 10000 элементов ) устройство может быть заключено в один объём, имеющий форму моноблока, ячейки, микросборки и даже одного кристалла. При недостаточной степени интеграции формообразование радиоустройств идёт по пути создания многоблочной конструкции. Это положение отражает табл.2, в которой показана зависимость формообразования конструкций РЭС от степени интеграции микросхем.
Таблица 2
Ранг функциональ-ной сложности РЭС | Форма конструктивного исполнения при количестве элементов в ИС | |||
не более 100 | 100…1000 | 1000…10000 | более 10000 | |
Устройство | Многоблочная конструкция | Моноблок или ФЯ | МСБ | **СБИС |
Блок | Моноблок | МСБ | БИС | __ |
Субблок | Функциональная ячейка | *БИС | __ | _ |
Функциональ-ный узел | ИС,гибридная ИС, функциональный компонент | __ | __ | __ |
*БИС – большая интегральная схема,
**СБИС – сверхбольшая интегральная схема.
В приведённой выше таблице можно указать конкретные виды конструктивов: многоблочная конструкция – ЭВМ EC 1045, моноблок – микрокалькулятор на печатной плате ”Электроника МК36”, МСБ – микрокалькулятор на стеклянной подложке с кристаллодержателями серии К145 ”Электроника Б3 – 04”, СБИС – однокристальная ЭКВМ специзделия.
... ЭУ, является то, что его редукция к "бумажному" варианту (распечатка содержания ЭУ) всегда приводит к потере специфических дидактических свойств, присущих ЭУ. Электронные средства обучения (ЭСО), используемые в образовательном процессе, должны соответствовать общедидактическим требованиям: научности, доступности, проблемности, наглядности, системности и последовательности предъявления материала, ...
... изучении раздела «Информационная деятельность человека» предмета «Информатика и ИКТ»» § 2.1. Описание методики использования технологии электронного обучения при изучении раздела «Информационная деятельность человека» предмета «Информатика и ИКТ» (для 10-11 классов информационно-технологического профиля) Прежде, чем подходить к представлению методики использования СДО Moodle, необходимо ...
... затратив многие часы своего свободного времени. В-третьих, компьютерные программы позволяют решать многие практические задачи быстро и четко. Все эти положительные моменты выступают за использование электронных средств обучения на уроках технологии. Научно-технический процесс коренным образом изменяет средства обучения, предлагает широчайший выбор новейших достижений в этой области, созданных ...
... Например, можно предложить классификацию, изображенную на рис. 1.13. Более определенно типы ТСО будут рассмотрены в последующих главах. Отметим лишь, что при выборе СО следует выяснять, каковы основные тактико-технические характеристики. Например, для особо важных объектов желательно, чтобы вероятность обнаружения СО была близка к 0.98; наработка на ложное срабатывание - к 2500 ч и к 3500 ...
0 комментариев