2 Оптимальный когерентный прием дискретных сигналов и его помехоустойчивость
В задаче распознавания сигналов, не содержащих случайных параметров(т.е. точно известных), «причинами» являются поступающие на вход сигналы , вероятности которых равны, очевидно, вероятности появления соответствующих элементов . «Следствиями» являются реализации суммы сигнала и помехи.
Количественно описание ситуации удобно производить с помощью рассмотрения векторов соответствующих колебаний. Вместо сигналов будем оперировать однозначно соответствующими им векторами , а вместо реализаций y(t) – векторами , координаты которых определяются выражением, которое в нашем случае запишем так:
(1)
В соответствии с теоремой Байеса
(2)
Как было отмечено, решение обычно выносится в пользу сигнала, имеющего наибольшую апостериорную вероятность. Так как знаменатель не зависит от номера I, то решающее правило(алгоритм решения) определяется так:
(3)
Следует обратить внимание на то, что в этих выражениях -- плотности вероятностей, так как компоненты вектора y, как видно из (1), являются непрерывными случайными величинами.
В выражении (3) априорные вероятности передачи элементов должны быть заданы. Следовательно, необходимо определить только правдоподобия . Это можно сделать исходя из того, что помеха аддитивна. Так как
,
то плотность вероятности некоторого значения вектора равна плотности вероятности, что вектор помехи n примет значение . Отсюда следует, что если- известная нам плотность вероятности вектора помехи, то
(4)
Последний переход справедлив потому, что сигнал и помехи – независимые процессы.
Для дальнейшей конкретизации алгоритма необходимо задать определенный вид помехи. В большинстве случаев имеют место нормальные (гауссовские) или близкие к ним помехи. Вычисления в этом случае оказываются наиболее простыми. При гауссовских помехах каждая компонента вектора распределена по нормальному закону
(5)
В ряде случаев, в частности, при равномерном распределении энергии помехи по полосе рассматриваемых частот, компоненты вектора являются независимыми случайными величинами. Тогда, как известно,
(6)
При зависимых компонентах выражение для существенно усложняется и этот случай здесь рассматривать не будем.
Отметим, что ,т.е. является квадратом длины(нормы) вектора помехи.
Следовательно,
(7)
Отбросив множители, не зависящие от номера сигнала i, решающее правило(3) можно представить в виде
(8)
Приемник, работающий по алгоритму(8), называется байесовским или приемником максимальной апостериорной вероятности. Если апостериорные вероятности элементов одинаковы, то решающее правило упрощается:
(9)
Соответствующий приемник называется приемником максимального правдоподобия. Правило(9) раскрывает механизм работы оптимального приемника.
Получив вектор y, с помощью обработки реализации y(t) необходимо вычислить расстояние от его конца до концов векторов всех возможных сигналов и вынести решение в пользу того сигнала, для которого величина будет минимальной, так как именно в этом случае функция (9) достигнет максимума. Коротко можно сказать, что оптимальный приемник выносит решение в пользу сигнала «ближайшего» к y(t).
Выражение(9) достигает максимума при минимуме показателя экспоненты. Следовательно, правило (9) можно записать в ином виде:
или, учитывая векторное представление
(10)
Здесь первый член в скобках не зависит от номера i. Последний член – есть энергия i-того сигнала. Если энергии всех сигналов одинаковы, что обычно имеет место, то этот член также не зависит от номера i. Таким образом, решающее правило можно записать так:
(11)
Справедливость такого перехода обусловлена тем, что второй член в (10) имеет знак минус и выражение (10) минимизируется, если этот член достигает максимума. Выражение(11) уже позволяет определить структуру оптимального приемника. Однако удобнее это выражение представить в другом виде. Действительно, учтем, что
(12)
Тогда окончательно получим
(13)
Эта структура называется оптимальным корреляционным приемником, так как основная операция, лежащая в его основе, это операция корреляции y(t) со всеми возможными сигналами .
Из проведенного рассмотрения следует, что в состав оптимального приемника должны входить генераторы, вырабатывающие образцы сигналов, тождественные тем, которые используются на передатчике. Кроме того, между работой генераторов передатчика и приемника должна соблюдаться синхронность и синфазность, т.е. обеспечиваться идеальная синхронизация.
... открытую ими новую область устремились сотни ученых, и сегодня виден тот колоссальный прогресс, который достигнут благодаря их усилиям. Можно, по-видимому, утверждать, что именно в области теории оптимального приема М-сигналов были получены наиболее значительные для прогресса в области телекоммуникаций результаты, который без нее был бы недостижим. Эти результаты, являющиеся итогом коллективного ...
... работы необходимо начинать с приобретения методических руководств к курсовой работе Ниеталина Ж.Н. и Ниеталиной Ж.Ж. «Электрлiк байланыс теориясы» выпущенной в Алма-Ате в 1999 году, Ниеталина Ж.Н. и Ниеталиной Ж.Ж. «Теория электрической связи» учебное пособие к курсовой работе. Алма-Ата 2001г., а также учебное пособие Зюко А.Г. и др. «Теория передачи сигналов» – М.; «Связь» 1988г., «Теория ...
... фильтра является величиной конечной. так как отклик фильтра не может появиться раньше чем придет воздействие то to ³ Tc. 2) длительность Tc < ¥ Þ оптимальная фильтрация применима лишь для импульсных сигналов. При синтезе СФ в качестве входного аналогового сигнала в курсовой работе используется импульсный сигнал, построенный в соответствии с какой либо бинарной кодовой ...
... модуляцией, можно сделать вывод, что помехоустойчивость приемника, использующего в качестве информационного параметра фазу, почти приближена к вероятности ошибки приемника Котельникова. 3. Оптимальная фильтрация. Отметим, что оптимальный приемник, является корреляционным, сигнал на его выходе представляет собой функцию корреляции принимаемого и ожидаемого сигналов, благодаря чему ...
0 комментариев