2. Структура предприятия
Предприятие выполняет работы по всему жизненному циклу создаваемой продукции (прикладные научные исследования, опытно-конструкторские разработки, серийное производство, гарантийное обслуживание, модернизация фирменный ремонт, также выполняется утилизация устаревшей военной техники). За последнее десятилетие в ННИИРТ организованны новые высокотехнологические производства и сотни рабочих мест. Здесь работают филиалы кафедр ведущих вузов Нижнего Новгорода.
Структура предприятия состоит из нескольких базовых отделений: конструкторское, схемотехническое, производственное, технологическое и отделение по испытанию опытных образцов. Рассмотрим их более подробно.
В конструкторском отделении трудится большой отряд специалистов. Здесь уделяют особое внимание освоению и внедрению самых прогрессивных методов разработки конструкций, обеспечивающих требуемые технические параметры, обладающие высокой надёжностью в экстремальных ситуациях, имеющие высокую технологичность и степень унификации.
Схемотехническое отделение- мозг предприятия. Здесь рождаются идеи, материализуется процесс разработки, запускается процесс создания высокотехнологичной продукции на основе достижений радиоэлектроники и информационных технологий.
Производство оснащено уникальными производственными центрами, станками с программным управлением и высокоавтоматическими участками прецизионной механообработки, новейшим оборудованием для сборки сложной радиоэлектронной аппаратуры.
Технологическое отделение – является одним из крупнейших хорошо оснащенных подразделений предприятия. Существенная часть по технологической подготовки производства связанна с разработкой прикладных программ для автоматизированного оборудования.
Исследовательская база включает в себя:
1. Стендовое оборудование на базе современной компьютерной техники;
2. Испытательный полигон с развитой инфраструктурой;
3. Испытательный комплекс для проведения механических, климатических и термических испытаний радиоаппаратуры.
3. Теоретическая часть
3.1 Введение
В плёночных интегральных микросхемах элементы создаются осаждением тонких (тонкоплёночные ИС) или толстых (толстоплёночные ИС) плёнок на специальные платы из диэлектрических материалов – подложки. Подложка служит механическим основанием ИС и, будучи диэлектриком, изолирует её элементы. На основе напыленных плёнок в настоящее время изготавливают только пассивные элементы. Плёночные схемы, дополненные активными элементами принято называть гибридными ИС (ГИС). Активные элементы в этих схемах крепятся на подложке методом навесного монтажа.
Такая технология изготовления ИС, при которой пассивные и активные элементы создаются по двум не зависимым друг от друга циклам, приводит к ряду преимуществ, которые обусловили широкое применение и использование ГИС. Гибридные ИС характеризуются простотой изготовления, малой трудоёмкостью, непродолжительностью производственного цикла и в силу этого низкой стоимостью.
Многоуровневое расположение пассивных элементов и использование в качестве активных элементов полупроводниковые ИС расширяют возможности схемотехнической разработки при создании БИС.
Технология изготовления тонких и толстых плёнок позволяет создавать прецизионные резисторы и конденсаторы, в силу чего гибридная технология предпочтительнее в схемах с повышенной точностью пассивных элементов.
Интегральные микросхемы, работающие в СВЧ диапазоне также создаются по гибридной технологии. При этом исключается трудности связанные с изоляцией элементов толстыми диэлектрическими слоями, неизбежной, если СВЧ ИС выполняется как полупроводниковая.
Толстоплёночную технологию целесообразно использовать при разработке мощных ИС, работа которых сопровождается большим выделением тепла.
3.2 Получение тонких плёнок
В современной технологии изготовления интегральных микросхем тонкие пленки (толщиной до 5 мкм) нашли широкое применение и выполняют разнообразные функции. В полупроводниковых ИС тонкие диэлектрические пленки используются как маскирующие покрытия для получения локализованных легированных областей.
В тонкопленочных ИС на основе самих пленок образуются пассивные элементы. При этом применяются тонкие пленки из материалов с высокой электропроводностью, диэлектрические и резистивные пленки. Тонкие диэлектрические пленки создают диэлектрическую изоляцию между различными слоями в схемах многоуровневой металлизацией. Нанесённые на поверхность готовой схемы, они защищают от механических повреждений. Тонкие плёнки металлов связывают между собой активные и пассивные элементы, образуют контактные площадки. Кроме того, в полупроводниковой и тонкоплёночной технологии плёнки используются как технологические элементы в процессе изготовления схем, например, в качестве контактных масок при диффузии и напылении. Существует множество методов получения тонких плёнок: термическое окисление кремния, термическое вакуумное напыление, ионно-плазменное напыление и т.д. Каждый из этих методов имеет свои преимущества и недостатки.
... качества паяных соединений и электрических параметров в соответствии с п. 4 рекомендаций. После этого выполняем покрытие лаком (п.4 технических требований конструктора), сушку и контроль работоспособности готовой платы преобразователя влажности газа. На завершающем этапе после контроля необходимо клеймить плату краской ТНПФ-84 по ТУ 29-02-889-79 (п.6 технических требований конструктора). 7. ...
... -4002; 5) пинцет ППМ 120 РД 107.290.600.034-89; 6) тара АЮР 7877-4048. Суммарное оперативное время Топ = 2 мин. Комплект технологической документации на технологический процесс сборки и монтажа блока стробоскопического прибора приведен в приложении. 5. ПРОЕКТИРОВАНИЕ УЧАСТКА СБОРКИ И МОНТАЖА Внедрение на предприятии механизированных, автоматизированных и автоматических поточных линий ...
... возможность ее сборки отдельно от других сборочных единиц. Технологическая схема сборки изделия является одним из основных документов, составляемых при разработке технологического процесса сборки. Расчленение изделия на сборочные элементы проводят в соответствии со схемой сборочного состава, при разработке которой руководствуются следующими принципами: схема составляется независимо от программы ...
... Применение многослойных конденсаторов с большим числом обкладок приводит к усложнению технологии, снижению надежности, электрической прочности конденсаторов и повышение их стоимости. Поэтому в пленочных микросборках в основном применяются лишь трехслойные конденсаторы. Все характеристики пленочных конденсаторов зависят от выбранных материалов. Диэлектрическая пленка должна иметь высокую адгезию ...
0 комментариев