3. ОСНОВЫ ФОТОМЕТРИИ
3.1. Свет и его основные свойства
Спектр электромагнитных излучений представлен на рисунке. К оптическому диапазону традиционно относят электромагнитные волны длиной м. Однако практически из данного диапазона средствами оп-тоэлектроники используется область 0,1-100 мкм. Это обстоятельство не является случайным. По энергетической шкале данному диапазону соответствует область энергий 0,01-10 эВ. Кванты света с такой энергией способны возбуждать только валентные электроны в собственных и примесных полупроводниках. Действительно, ширина запрещенной зоны широкозонных полупроводников составляет единицы электронвольт, а энергия возбуждения примесных атомов в германии и кремнии - сотые доли электронвольт. Вне этого интервала энергий взаимодействия света с веществом носят качественно иной характер. Так, при углублении в коротковолновую область спектра начинает сказываться возбуждение электронов внутренних оболочек атома, а в длинноволновой области, когда фотоны уже не способны ионизировать атомы вещества, их воздействие проявляется в виде экситонной и фотонной генерации. Весь оптический диапазон разбит на три основные области:
1)0,75 мкм - инфракрасная (ИК);
2) 0,3950,75 мкм - видимая (видимый свет);
3)0,395 мкм - ультрафиолетовая (УФ).
Каждая из этих областей делится на несколько поддиапазонов (см. рис. 1.1).
Как известно, свет обладает одновременно волновой и корпускулярной природой. В волновом аспекте он представляет собой электромагнитные колебания, излучаемые атомами вещества при изменении их энергетического состояния. Эти волны распространяются в вакууме со скоростью с = 299792458 м/с, а в веществе с меньшей скоростьюгде
показатель преломления среды. Частота V и длина волны А. связаны соотношением
т.е. в вакууме
Световая монохроматическая волна создается взаимно ортогональными и синусоидально изменяющимися во времени и пространстве электрическим и магнитным полями, перпендикулярными направлению ее распространения. Световая волна может быть когерентной, если все атомы вещества излучают волны, фаза и направление распространения которых совпадают, либо некогерентной, если каждый атом излучает оптическую волну, имеющую независимые фазу и направление распространения, случайным образом меняю щиеся во времени. Фотоны рассматриваются как корпускулы, когда речь идет о взаимодействии света с веществом. В этом случае монохроматическое излучение можно представить как поток элементарных частиц, каждая из которых обладает элементарной энергией, где
= 6,626 • 10-34 Дж • с - постоянная Планка. В веществе электроны связаны с атомами, и чтобы стать свободными, они должны получить энергию
, равную энергии их связи. При поглощении фотона атомом происходит освобождение электрона, если
т.е.
. Максимальная длина волны излучения, способная вызвать освобождение электрона, называется пороговой длиной волны
т. е.
[мкм] = 1,237/
[эВ].
Таблица 3.1 Основные энергетические и фотометрические величины
Рис. 3.1. Спектр электромагнитных излучений [1]
3.2 Энергетическая фотометрия
Величины, относящиеся к оптическому излучению, можно оценивать либо с учетом произведенного зрительного впечатления (визуальная фотометрия), либо исключительно по количеству энергии, ее распределению в пространстве и времени (энергетическая фотометрия). Основным параметром системы энергетических величин является поток излучения- средняя
мощность, передаваемая оптическим излучением за время, значительно большее периода электромагнитных колебаний.
Спектральный состав излучения характеризуется спектральным распределением потока излучения - функцией. Таким образом, мощность, переносимую потоком излучения во всем интервале длин волн, определяют
(1.1)
Основные величины, характеризующие энергетические и визуальные параметры оптического излучения, приведены в табл. 1.1 [2, 3].
В некоторых случаях, когда в качестве основного параметра при описании энергетической системы принимают энергию излучения, связь энергии с потоком излучения можно записать в дифференциальной форме
Оба варианта описания равнозначны и отличаются разве что формой написания основных формул. Рассмотрим подробнее основные фотометрические величины.
Энергетическая сила света (сила излучения) - пространственная плотность потока излучения, определяемая отношением потока излученияк телесному углу
(в стерадианах), в пределах которого заключен этот поток
где- телесный угол, имеющий в вершине источник излучения, определяется как отношение площади сферической поверхности
внутри конуса этого угла к квадрату радиуса сферы (рис. 1.2)
Энергетическая светимость Мс(поверхностная плотность потока излучения) - поток излучения, отнесенный к единице площади излучающей поверхности
где- площадь поверхности источника излучения. Необходимо отметить,
что светимость недостаточно полно характеризует параметры излучателя, и для полной характеристики необходимо знать направленность потока излучения.
Энергетическая яркость -сила излучения с единицы излучающей поверхности в данном направлении, отнесенная к площади ортогональной проекции излучающей поверхности на плоскость, перпендикулярную указанному направлению (рис. 3.2)
,(1.6)
где- угол между нормалью К излучающей поверхности и направлением, в котором производится изме-
„с. 3.2. Пояснения к определению силы света
рение силы излучения;- энергетическая сила света в направлении
- площадь элемента поверхности источника. Необходимо отметить, что яркость не является основной характеристикой источника. Например, у двух излучателей, обладающих одинаковой яркостью, но разной площадью светящейся поверхности, можно с помощью оптической системы уравнять наблюдаемые площади свечения. В этом случае излучатель с большей активной площадью окажется ярче в число раз, равное отношению
(если
принять).
Энергетическая освещенность (плотность мощности) - мощность потока излучения, приходящаяся на единицу площади облучаемой поверхности
(1.7)
где- площадь облучаемой поверхности.
В случае, когда приходится иметь дело с равнояркими источниками, для определения силы света и потока излучения от тел простой формы легко получить следующие расчетные формулы:
Рис. 1.4. Диаграммы направленности равноярких излучателей: а - плоского; б - шарообразного; в – цилиндрического
1) для плоской излучающейв одну сторону площадки (рис. 1.4, а)
2) для шара диаметром(рис. 1.4, б)
3) для цилиндра с неизлучающимиторцами (рис. 1.4,в)
Связь между интегральными и спектральными характеристиками определяется выражениями
... ОП, ОРП и НРП по двум ОВ совместно с информационным сигналом. Одна стойка обслуживает два линейных тракта при установке на ОП и четыре при установке на ОРП. Комплект блоков НРП обеспечивает передачу по каждой паре ОВ цифровых сигналов совместно с сигналами СС и ТМ. Оптический сигнал поступает на оптический линейный регенератор (РЛ-О), в котором производится оптоэлектронное преобразование, после ...
... большие габариты, малый КПД, потребность во внешнем устройстве накачки являются основными причинами, по которым этот источник не используется в современных ВОСП. Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь ...
... заданные функции с заданным качеством в течение некоторого промежутка времени в определённых условиях. Изменение состояния элемента (системы), которое влечёт за собой потерю указанного свойства, называется отказом. Надёжность работы ВОЛП – это свойство волоконно-оптической линии обеспечивать возможность передачи требуемой информации с заданным качеством в течение определённого промежутка времени ...
... зв’язку. Симетрування високочастотнох кабелів зв’язку. 3.4 Приблизна тематика комплексних завдань. Розрахунок первинних та вторинних параметрів кабелів зв’язку. Проект волоконно-оптичної системи передачі на з’єднальній лінії Між двома районними АТС. 3.5 Приблизний розподіл годин дисципліни. № Тематика Число годин Лекції Практичні Лаб. Раб ...
0 комментариев