3. ОСНОВЫ ФОТОМЕТРИИ

 

3.1. Свет и его основные свойства

Спектр электромагнитных излучений представлен на рисунке. К оптическому диапазону традиционно относят электромагнитные волны длиной  м. Однако практически из данного диапазона средствами оп-тоэлектроники используется область 0,1-100 мкм. Это обстоятельство не является случайным. По энергетической шкале данному диапазону соответствует область энергий 0,01-10 эВ. Кванты света с такой энергией способны возбуждать только валентные электроны в собственных и примесных полупроводниках. Действительно, ширина запрещенной зоны широкозонных полупроводников составляет единицы электронвольт, а энергия возбуждения примесных атомов в германии и кремнии - сотые доли электронвольт. Вне этого интервала энергий взаимодействия света с веществом носят качественно иной характер. Так, при углублении в коротковолновую область спектра начинает сказываться возбуждение электронов внутренних оболочек атома, а в длинноволновой области, когда фотоны уже не способны ионизировать атомы вещества, их воздействие проявляется в виде экситонной и фотонной генерации. Весь оптический диапазон разбит на три основные области:

1)0,75 мкм - инфракрасная (ИК);

2) 0,3950,75 мкм - видимая (видимый свет);

3)0,395 мкм - ультрафиолетовая (УФ).

Каждая из этих областей делится на несколько поддиапазонов (см. рис. 1.1).

Как известно, свет обладает одновременно волновой и корпускулярной природой. В волновом аспекте он представляет собой электромагнитные колебания, излучаемые атомами вещества при изменении их энергетического состояния. Эти волны распространяются в вакууме со скоростью с = 299792458 м/с, а в веществе с меньшей скоростьюгде показатель преломления среды. Частота V и длина волны А. связаны соотношениемт.е. в вакууме

Световая монохроматическая волна создается взаимно ортогональными и синусоидально изменяющимися во времени и пространстве электрическим и магнитным полями, перпендикулярными направлению ее распространения. Световая волна может быть когерентной, если все атомы вещества излучают волны, фаза и направление распространения которых совпадают, либо некогерентной, если каждый атом излучает оптическую волну, имеющую независимые фазу и направление распространения, случайным образом меняю щиеся во времени. Фотоны рассматриваются как корпускулы, когда речь идет о взаимодействии света с веществом. В этом случае монохроматическое излучение можно представить как поток элементарных частиц, каждая из которых обладает элементарной энергией, где= 6,626 • 10-34 Дж • с - постоянная Планка. В веществе электроны связаны с атомами, и чтобы стать свободными, они должны получить энергию, равную энергии их связи. При поглощении фотона атомом происходит освобождение электрона, если  т.е.. Максимальная длина волны излучения, способная вызвать освобождение электрона, называется пороговой длиной волныт. е.[мкм] = 1,237/[эВ].

Таблица 3.1 Основные энергетические и фотометрические величины


Рис. 3.1. Спектр электромагнитных излучений [1]

3.2 Энергетическая фотометрия

Величины, относящиеся к оптическому излучению, можно оценивать либо с учетом произведенного зрительного впечатления (визуальная фотометрия), либо исключительно по количеству энергии, ее распределению в пространстве и времени (энергетическая фотометрия). Основным параметром системы энергетических величин является поток излучения- средняя

мощность, передаваемая оптическим излучением за время, значительно большее периода электромагнитных колебаний.

Спектральный состав излучения характеризуется спектральным распределением потока излучения - функцией. Таким образом, мощность, переносимую потоком излучения во всем интервале длин волн, определяют

 (1.1)

Основные величины, характеризующие энергетические и визуальные параметры оптического излучения, приведены в табл. 1.1 [2, 3].

В некоторых случаях, когда в качестве основного параметра при описании энергетической системы принимают энергию излучения, связь энергии с потоком излучения можно записать в дифференциальной форме

Оба варианта описания равнозначны и отличаются разве что формой написания основных формул. Рассмотрим подробнее основные фотометрические величины.

Энергетическая сила света (сила излучения) - пространственная плотность потока излучения, определяемая отношением потока излученияк телесному углу(в стерадианах), в пределах которого заключен этот поток

где- телесный угол, имеющий в вершине источник излучения, определяется как отношение площади сферической поверхностивнутри конуса этого угла к квадрату радиуса сферы (рис. 1.2)

Энергетическая светимость Мс(поверхностная плотность потока излучения) - поток излучения, отнесенный к единице площади излучающей поверхности

где- площадь поверхности источника излучения. Необходимо отметить,

что светимость недостаточно полно характеризует параметры излучателя, и для полной характеристики необходимо знать направленность потока излучения.

Энергетическая яркость -сила излучения с единицы излучающей поверхности в данном направлении, отнесенная к площади ортогональной проекции излучающей поверхности на плоскость, перпендикулярную указанному направлению (рис. 3.2)

 ,(1.6)

где- угол между нормалью К излучающей поверхности и направлением, в котором производится изме-

с. 3.2. Пояснения к определению силы света

рение силы излучения;- энергетическая сила света в направлении

 - площадь элемента поверхности источника. Необходимо отметить, что яркость не является основной характеристикой источника. Например, у двух излучателей, обладающих одинаковой яркостью, но разной площадью светящейся поверхности, можно с помощью оптической системы уравнять наблюдаемые площади свечения. В этом случае излучатель с большей активной площадью окажется ярче в число раз, равное отношению (если

принять).

Энергетическая освещенность  (плотность мощности) - мощность потока излучения, приходящаяся на единицу площади облучаемой поверхности

 (1.7)

где- площадь облучаемой поверхности.

В случае, когда приходится иметь дело с равнояркими источниками, для определения силы света и потока излучения от тел простой формы легко получить следующие расчетные формулы:

Рис. 1.4. Диаграммы направленности равноярких излучателей: а - плоского; б - шарообразного; в – цилиндрического

1)  для плоской излучающейв одну сторону площадки (рис. 1.4, а)

2)  для шара диаметром(рис. 1.4, б)

3)  для цилиндра с неизлучающимиторцами (рис. 1.4,в)

Связь между интегральными и спектральными характеристиками определяется выражениями


Информация о работе «Характеристики компонентов волоконно-оптических систем передачи»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 73795
Количество таблиц: 1
Количество изображений: 38

Похожие работы

Скачать
43054
9
4

... ОП, ОРП и НРП по двум ОВ совместно с информационным сигналом. Одна стойка обслуживает два линейных тракта при установке на ОП и четыре при установке на ОРП. Комплект блоков НРП обеспечивает передачу по каждой паре ОВ цифровых сигналов совместно с сигналами СС и ТМ. Оптический сигнал поступает на оптический линейный регенератор (РЛ-О), в котором производится оптоэлектронное преобразование, после ...

Скачать
67879
12
0

... большие габариты, малый КПД, потребность во внешнем устройстве накачки являются основными причинами, по которым этот источник не используется в современных ВОСП. Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь ...

Скачать
84609
24
18

... заданные функции с заданным качеством в течение некоторого промежутка времени в определённых условиях. Изменение состояния элемента (системы), которое влечёт за собой потерю указанного свойства, называется отказом. Надёжность работы ВОЛП – это свойство волоконно-оптической линии обеспечивать возможность передачи требуемой информации с заданным качеством в течение определённого промежутка времени ...

Скачать
23856
4
0

... зв’язку. Симетрування високочастотнох кабелів зв’язку. 3.4 Приблизна тематика комплексних завдань. Розрахунок первинних та вторинних параметрів кабелів зв’язку. Проект волоконно-оптичної системи передачі на з’єднальній лінії Між двома районними АТС. 3.5 Приблизний розподіл годин дисципліни. № Тематика Число годин Лекції Практичні Лаб. Раб ...

0 комментариев


Наверх