3.5 Выравнивание освещенности изображений
Часто некоторые участки на изображении бывают слишком темными, чтобы на них можно было что-то разглядеть.
Если прибавить яркости ко всему изображению, то изначально светлые участки могут оказаться совсем засвеченными. Чтобы улучшить вид изображения в таких случаях, применяется метод выравнивания освещенности.
Этот метод не является линейным, т.е. не реализуется линейной системой. Действительно, рассмотрим модель типичную освещенности для фотографии. Фотографируемый пейзаж обычно освещен по-разному в разных точках. Причем обычно освещенность меняется в пространстве достаточно медленно.
Мы хотим, чтобы все детали на фотографии были освещены более однородно, но при этом оставались достаточно контрастными друг относительно друга.
А на реальной фотографии получается произведение той картинки, которую мы хотим видеть и карты освещенности. Там где освещенность близка к нулю, все предметы и детали тоже близки к нулю, то есть практически невидимы.
Поскольку освещенность меняется в пространстве достаточно медленно, то можно считать ее низкочастотным сигналом. Само же изображение можно считать в среднем более высокочастотным сигналом. Если бы в процессе фотографии эти сигналы складывались, то их можно было бы разделить с помощью обычного фильтра.
Например, применив ВЧ-фильтр, мы бы «избавились от перепадов освещенности» (НЧ-сигнала), а оставили «само изображение». Но поскольку эти сигналы не складываются, а перемножаются, то избавиться от неравномерностей освещенности простой фильтрацией не удастся.
Для решения таких задач применяется гомоморфная обработка. Основной метод гомоморфной обработки заключается в сведении нелинейной задачи к линейной с помощью каких-либо преобразований. Например, в нашем случае можно свести задачу разделения перемноженных сигналов к задаче разделения сложенных сигналов. Для этого нужно взять логарифм от произведения изображений.
Логарифм от произведения равен сумме логарифмов сомножителей. Если учесть, что логарифм от НЧ-сигнала остается НЧ-сигналом, а логарифм от ВЧ-сигнала остается ВЧ-сигналом, то мы свели задачу разделения произведения сигналов к задаче разделения суммы НЧ- и ВЧ-сигналов. Очевидно, эту задачу можно решить с помощью ВЧ-фильтра, который удалит из суммы сигналов низкие частоты. После этого останется только взять от полученного сигнала экспоненту, чтобы вернуть его к исходному масштабу амплитуд.
ВЧ-фильтр можно реализовать следующим образом. Сначала к изображению применяется операция размытия (НЧ-фильтр), а потом из исходного изображения вычитается размытое.
Наилучший радиус размытия зависит от конкретного изображения. Можно начать эксперименты с радиуса порядка десяти пикселей.
Обычно для размытия изображения применяется двумерный гауссовский фильтр.
Непосредственное вычисление двумерной свертки с таким ядром потребует огромных вычислений даже при сравнительно небольшом размере ядра. Однако приведенное гауссово ядро обладает свойством сеперабельности.
Это означает, что эквивалентного эффекта можно достичь, отфильтровав сначала все строки изображения одномерным гауссианом, а затем отфильтровав все столбцы полученного изображения таким же одномерным гауссианом.
Полученный от выравнивания освещенности эффект может оказаться слишком сильным (темные области станут по яркости такими же, как и светлые). Чтобы уменьшить эффект, можно просто смешать обработанное изображение с исходным в определенной пропорции.
3.6 Другие применения
Улучшение изображений и художественные эффекты
Для улучшения изображений и создания различных художественных эффектов часто применяется фильтрация. Например, для придания изображению резкости можно воспользоваться фильтром, который усиливает сигнал на высоких частотах. Существуют фильтры для выделения или нахождения границ в изображении, размытия, направленного смазывания изображений, создания различных эффектов, таких как акварель, тиснение.
Поиск фрагментов в изображениях
Для поиска фрагментов в изображениях применяется двумерная корреляция. Сигналом для поиска является изображение, а искомым сигналом – искомый фрагмент изображения. Эффективное вычисление корреляции стало возможным благодаря двумерному БПФ.
Компрессия изображений
Методы цифровой обработки сигналов позволяют достаточно эффективно сжимать изображения в частотной области. Например, алгоритм JPEG действует следующим образом (упрощенно). Изображение разбивается на фрагменты размером 8x8 пикселей, и каждый фрагмент переводится в частотную область. После этого в каждом фрагменте те высокочастотные составляющие, амплитуда которых мала, выкидываются, а все остальные – кодируются. Ясно, что для тех областей изображения, где яркость изменяется, не очень быстро (а таких большинство), высокочастотных компонент почти нет. Таким образом, удается выкинуть из спектра существенную часть не очень важной информации. В JPG-файле кодируются оставшиеся «существенные» амплитуды.
В алгоритме JPEG применяется модификация ДПФ: дискретное косинусное преобразование (ДКП). ДКП от двумерного сигнала можно вычислить, отразив четным образом сигнал относительно нулевой точки и вычислив двумерное ДПФ полученного сигнала с двукратными размерами. В полученном спектре будут содержаться только «косинусные» коэффициенты.
Восстановление изображений
При съемке движущегося объекта неподвижной камерой полученное изображение получается смазанным. Если знать параметры движения объекта, то можно построить ядро свертки, которое камера «применила» к снимаемому сигналу. Затем с помощью метода деконволюции можно в значительной степени устранить эффект размытия.
Иногда при съемке камера может вносить в изображение интерференцию – периодический муар, накладываемый на изображение. Часто оказывается, что спектр этой интерференции состоит из одной – двух гармоник. В этом случае ее можно эффективно удалить с помощью фильтра, который подавляет заданные частоты (notch filter).
Заключение
Работая над данным обзором, по долгу службы что называется, мне пришлось посетить ряд отечественных фирм, специализирующихся на создании аппаратных и программных средств обработки цифровых сигналов. Впечатления – самые приятные. Уровень разработок – мировой, общее ощущение от фирм – как во вложениях хорошего хозяина: прочность, ухоженность и стабильность, настроение – рабочее, никакого нытья и уныния!
Иными словами, цифровая обработка – это одна из перспективных областей высоких наукоемких технологий – high tech – привлекательная для приложения сил. В исторической ретроспективе, лет этак через 20, в "Российской компьютерной энциклопедии – 2020" может быть напишут: "В конце ХХ века, с падением "железного занавеса" и началом перехода к рыночным отношениям, компьютерная промышленность России пережила глубокий кризис. Однако после известных событий августа 1998 года начался бурный рост прикладных направлений, связанных с разработкой промышленных контроллеров, цифровых средств связи и мультимедийных устройств для персональных компьютеров".
Для истинных талантов – это чудесная возможность проявить себя, заставить "мир прогнуться". В среднем на уровне обычного активного человека с инженерным дипломом цифровые методы обработки сигналов – это рабочие места для специалистов оборонных НИИ. Для молодежи – мультимедийные технологии или цифровая связь – благодатнейшие области, где порхают "жар-птицы", которых нужно ухватить за хвост.
Вспомните еще раз историю вычислительной техники. У истоков персональных вычислений стояли два молодых (чуть больше 20 лет) человека – Стив Джобс и Стив Возняк, которые, если верить компьютерной мифологии, сделали свой первый персональный компьютер – прототип Apple-I – в гараже, а потом захватили значительную часть мирового рынка продаж персональных компьютеров.
А деньги где взяли? Автомобильчик – тот самый, что в гараже стоял, – продали. А папаша Билл Гейтс, стабильно занимающий одно из первых мест в списке богатейших людей Америки? А изобретатель мыши Дуглас Энгельбарт? А разработчик звуковых карт? В общем – список бесконечен.
А мы чем хуже? Гараж есть, автомобильчик есть, образование – на зависть Биллу и Стиву. Опять ничего не понимаю. Климат, что ли, у нас не тот? Но ничего, будем надеяться, что старшие товарищи – генералы компьютерной индустрии меня публично высекут и поправят. Кто поднимет перчатку? Или в своей стране мы никогда не дождемся ответа на неправильные вопросы и никогда не выйдем из состояния "неграждан"?
Список литературы
1. Специализированный процессор для выполнения быстрого преобразования Фурье и обработки сигналов СПФ СМ. Рекламные материалы. М.: ИНЭУМ, 1984.
2. Корнеев В. В., Киселев А. В. Современные микропроцессоры. М.: НОЛИДЖ, 1998. 240 с.
3. Цифровые процессоры обработки сигналов. Справочник. Остапенко А. Г., Лавлинский С. И., Сушков А. В. и др. Под ред. А. Г. Остапенко. М.: Радио и связь, 1994. 264 с.
4. Клингман Э. Проектирование специализированных микропроцессорных систем. Пер. с англ. М.: Мир, 1985. 363 с.
5. Белоус А. И. и др. Микропроцессорный комплект БИС серии К1815 для цифровой обработки сигналов. Справочник. Белоус А. И., Поддубный О. Б., Журба В. М. Под ред. А. И. Сузопарова. М.: Радио и связь, 1992. 256 с.
6. Лапа В. Г. Математические основы кибернетики. Киев, Высшая школа, 1974. 452 с.
... Студент группы 220352 Чернышёв Д. А. Справка— отчет о патентном и научно- техническом исследовании Тема выпускной квалификационной работы: телевизионный приёмник с цифровой обработкой сигналов. Начало поиска 2. 02. 99. Окончание поиска 25.03.99 Предмет поиска Страна, Индекс (МКИ, НКИ) № ...
... 1 – «-» Причем 1-ый разряд слева – знаковый разряд. 16 14 12 10 8 6 4 2 Т 2Т 2. Связи между аналоговыми и дискретными сигналами. При обработке сигнала на ЭВМ необходимо в максимальной степени, чтобы дискретный или цифровой сигнал содержал все признаки аналогового сигнала. При дискретизации возможна потеря информации, которая ...
... примерно 6%. В общем, в районе 1 - 4 кГц чувствительность уха по всем параметрам максимальна, и составляет не так уж и много, если брать не логарифмированные значения, с которыми приходится работать цифровой технике. Примите на заметку - многое из того, что происходит в цифровой обработке звука, может выглядеть ужасно в цифрах, и при этом звучать неотличимо от оригинала. В цифровой обработке ...
... несущими и амплитудно-фазовая модуляция с одной боковой полосой (АФМ-ОБП). 3. Выбор длительности и количества элементарных сигналов, используемых для формирования выходного сигнала В реальных каналах связи для передачи сигналов по частотно ограниченному каналу используется сигнал вида , но он бесконечен во времени, поэтому его сглаживают по косинусоидальному закону. , где - ...
0 комментариев