ТЕЛЕВИЗИОННЫЙ ПРИЁМНИК С ЦИФРОВОЙ ОБРАБОТКОЙ СИГНАЛОВ

СОДЕРЖАНИЕ

Введение

1.   Технико-экономический анализ задания к выпускной квалификационной работе

1.1.     Анализ задания и обоснование актуальности темы работы

1.2.     Обоснование и формализация критериев качества проектируемого устройства

1.3.     Обзор и анализ известных решений

1.4.     Разработка и выбор оптимального варианта

1.5.     Экономическая оценка разрабатываемого варианта

2.   Схемотехнический раздел

2.1.     Расчёт схемы эмиттерного повторителя в канале изображения

2.2.     Расчет схемы усилительного каскада в канале звука стандарта NICAM

2.3.     Расчёт схемы фильтра в канале изображения

2.4.     Расчёт схемы эмиттерного повторителя в канале звука стандарта NICAM

2.5.     Расчёт стабилизатора в схеме питания

2.6.     Расчёт допусков на радиоэлементы

2.7      Описание работы принципиальной электрической схемы по каналу

прохождения видеосигнала

3.   Конструкторско-технологический раздел

3.1.     Разработка конструкции узла

3.2.     Расчёт времени наработки на отказ

3.3.     Порядок настройки, регулировки и эксплуатации разработанного устройства

3.4.     Типовые неисправности в устройстве и рекомендации по их

устранению

Заключение

Список использованных источников

Приложения

Введение

В настоящее время применение цифровой техники является магистральным путём развития телевизионных приёмников. Использование цифровой техники предоставило много возможностей для улучшения потребительских качеств телевизоров при одновременном снижении числа дискретных элементов, что положительно влияет на повышение надёжности работы телевизионных приёмников.

Вначале использование цифровых схем в телевизорах ограничивалось только блоком управления, все остальные узлы выполнялись на основе аналоговых схем. По мере модернизации элементной базы и с началом применения микропроцессоров стала возможной разработка телевизоров с цифровым управлением и цифровой обработкой сигналов.

ЗАДАНИЕ

на выпускную квалификационную работу

1.   Тема Телевизионный приёмник с цифровой обработкой сигналов.

 

2. Цель работы

2.1 Задачи работы: выполнить эскизный проект телевизионного приёмника с цифровой обработкой сигналов; выполнить монтаж и настройку цифрового блока обработки.

2.2 Технические требования: напряжение питания 220 вольт частотой 50 Гц. Телевизионный приёмник должен обеспечивать: число каналов приёма – не менее 50; возможность электронного поиска станции; частоту кадровой развёртки - 100 герц; возможность приёма сигналов телетекста, стандартов телевизионного вещания B/G, D/K, MI, а также систем цветового кодирования PAL, SECAM, NTSC 3.58, 4.43; наличие режимов “картинка в картинке”, ”телетекст в картинке “. Условия эксплуатации ГОСТ 16.014 УХЛ 4.2

 

3. Содержание пояснительной записки

Введение

1. Технико-экономический анализ задания к выпускной квалификационной работе.

2. Схемотехнический раздел.

3. Конструкторско- технологический раздел.

Заключение

4. Графическая часть:

1.   Схема электрическая структурная – 1лист (формат А1);

2.   Схема электрическая принципиальная –2листа (формат А1);

3.   Сборочный чертёж узла -1лист (формат А1).

1.   Технико-экономический анализ задания к выпускной квалификационной работе

1.1Анализ задания и обоснование актуальности темы работы

В соответствии с заданием необходимо разработать приёмник телевизионного изображения с цифровой обработкой сигналов. В связи с этим в разрабатываемом устройстве необходимо применить микропроцессор для управления цифровыми микросхемами. Кроме того необходима как последовательная, так и параллельная шинная организация управления устройством. Кроме информационных цифровых сигналов необходимо наличие сигналов для синхронизации обмена цифровыми данными в системе и сигналов управления обменом. Обычно используют три различных типа системных шин:

-     шина IM (Interneta M-Bus);

-     шина Томпсона;

-     шина I2C.

Шина IM представляет собой комплект из трёх сигнальных линий: линии данных (DATA), линии синхронизации (CLOCK) и линии идентификации (IDENT). Линия данных является двунаправленной, передача информации по остальным двум шинам возможна лишь в одном направлении. Шина IM может быть применена в двух вариантах для медленных передаваемых потоков (IM-IDS) и быстрых передаваемых потоков (IM-IDF).

Обмен данными начинается, когда уровень на всех линиях шины переходит в состояние логического ноля. Конец обмена данными сигнализирует короткий импульс в линии идентификации.

Шина Томпсона, как и шина IM, также представляет собой трёхпроводную систему, состоящую из линии данных (DATA), линии синхронизации (CLOCK) и линии отбоя (ENABLE). Линия данных является двунаправленной. Передача данных начинается при изменении уровня на низкий, а конец передачи данных происходит по короткому импульсу в линии отбоя.

Шина I2C представляет собой двунаправленную синхронную шину, состоящую из двух сигнальных линий: линии данных (SDA) и линии синхронизации (SCL). Передача данных возможна также и в одном направлении, если абоненты шины работают только как приёмники.

Началом передачи является логический ноль в линии данных. Данные передаются блоками (кодовыми словами) из 8 последовательных информационных битов (побайтно). Дополнительно передаётся сигнал подтверждения приёма от последнего принимавшего данные абонента системной шины. Восьмой бит в кодовом слове однозначно определяет направление передачи следующего кодового слова. Передача заканчивается, когда уровень в линиях SDA и SCL соответствует «логической» 1.

В нашем устройстве применим шину I2C т.к. в ней используется наименьшее количество магистралей для передачи и управления передачей информации. Кроме того, к ней проще всего подключить такие узлы как: телетекст, кадр в кадре и т.д.

Далее по заданию необходимо обеспечить питание нашего устройства от сети 220В 50Гц. Для этого в телевизионном приёмнике необходимо применить преобразователь напряжения, чтобы преобразовать напряжение сети в более низкие напряжения для питания блоков, входящих в состав нашего устройства. В качестве преобразователя целесообразно применить импульсный преобразователь напряжения, т.к. он имеет малую массу и габариты.

Кроме того, необходимо, чтобы телевизионный приёмник обеспечивал настройку не менее чем на 50 каналов и имел возможность электронного поиска телевизионных программ. Эту задачу можно решить, применив в нашем устройстве тюнер, управляемый микропроцессором. Микропроцессор будет осуществлять управление тюнером, а данные о настройке будет заносить в перепрограммируемое постоянное запоминающее устройство.

Следующее требование в задании, это обеспечение частоты кадровой развёртки – 100Гц.


Согласно требованиям стандарта, телевизионное изображение передаётся со скоростью 25 кадров в секунду. Для сокращения полосы частот телевизионного канала, кадр составляют из двух полукадров (полей). Таким образом, при чересстрочной развёртке частота кадровой развёртки равна 50 Гц. При используемой 50 Гц системе не удаётся избавиться от известного эффекта «мелькания». Также много неприятностей приносят перекрёстные помехи в каналах яркости и цветности, бороться с которыми достаточно сложно.

Рис.1.1 Схема преобразования кадровой развёртки в 100 Гц.

С применением 100 Гц-системы во многом удаётся справиться с такими дефектами телевизионной картинки. Перевод телевизора в 100 Гц- систему может осуществляется с помощью цифровых схем. Типовая схема преобразования показана на рис.1.1. Полный цветной телевизионный сигнал (ПЦТС) разделяется на цветоразностные сигналы (R-Y), (B-Y) и яркостный сигнал (Y) , которые в аналого-цифровом преобразователе (АЦП) переводятся в цифровую форму. Частота выборки аналогового сигнала при оцифровке должна соответствовать, как минимум удвоенной ширине полосы Y-сигнала. Обычно тактовая частота выборки составляет 13,5 Мгц. Цифровая информация заносится в промежуточное запоминающее устройство (ЗУ), а затем считывается оттуда с удвоенной скоростью. После преобразования в ЦАП аналоговая информация в полукадре для дальнейшей информации существует уже на двойной частоте.

Заметим, что на 10 Гц-уровне строчная частота также должна быть удвоена и составлять 31,25 Кгц. Это обстоятельство предъявляет повышенные требования к сетевому преобразователю. Он должен быть рассчитан на повышенное потребление мощности генератором строчной развёртки, и, кроме того, его рабочая частота должна соответствовать строчной частоте 31,25 Кгц, чтобы избежать интерференционных помех, которые на экране появляются в виде «муара».

Далее по заданию необходимо наличие устройства «кадр в кадре». Это устройство легко реализовать при наличии цифровой обработки сигналов изображения.

Принцип обработки сигнала в таком устройстве представлен на рис 1.2.


Рис 1.2 Принцип обработки устройства «кадр в кадре»

Источниками сигналов для дополнительного изображения могут служить второй радиоканал (тюнер 2), видеомагнитофон (видео1) и т.д. Эти сигналы через коммутатор поступают в основной канал изображения и в дополнительный канал «кадра в кадре» (PIP).

Активный интервал строки исходного PIP – кадра составляет 52 мкс; число активных строк в исходном PIP – кадре 574, а в исходном полукадре – 287. После дискретизации исходного видеосигнала дополнительного изображения с помощью АЦП сигнал в цифровом виде записывается в динамическое ОЗУ, ёмкость которого рассчитана на запоминание каждой четвёртой строки исходного поля.

Затем информация считывается из ОЗУ со скоростью в четыре раза большей, чем записывалась, и подаётся на ЦАП.

С выхода ЦАП аналоговый сигнал поступает вместе с сигналом «окна» в канал изображения, где смешивается с основным сигналом. Сигнал дополнительного изображения представляет собой совокупность трёх видеосигналов R,G,B, с активным интервалом строки 13мкс и числом строк в дополнительном поле, равным 72.

Далее по заданию в соответствии с ГОСТ 16019-78 УХЛ 4.2 наше изделие стационарное, а, следовательно, нужно предусмотреть устойчивость конструкции к механическим воздействиям.

Теперь об актуальности темы работы. В настоящее время традиционная аналоговая техника связи повсеместно в мире заменяется более совершенной – цифровой. Этот процесс охватил и телевидение. Важнейшее преимущество цифровой техники – возможность цифровой обработки, передачи и хранения информации, в частности визуальной.

Цифровая обработка телевизионного изображения позволяет достичь очень высокого уровня качества и предоставляет пользователю массу новых возможностей и новых видов услуг.

Цифровая обработка изображений важна тем, что является, по сути, основной базой для создания нового поколения телевизионной техники – передающей и приёмной. В частности, без неё невозможно одной из важнейших задач, стоящих сейчас в области телевидения- создания и запуска в эксплуатацию системы телевидения высокой чёткости. Работы по созданию такой системы уже полным ходом ведутся сегодня в технически развитых странах, и привлечённые финансовые, технические и интеллектуальные ресурсы таковы, что становится совершенно ясно – переход к системам телевидения с цифровой обработкой сигнала в общемировом масштабе неизбежен и является делом близкого будущего.


Информация о работе «Телевизионный приемник с цифровой обработкой»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 74930
Количество таблиц: 24
Количество изображений: 17

Похожие работы

Скачать
40971
3
3

... высокую точность и временную стабильность испытательного сигнала. Элементную базу таких ГИС составляют цифровые микросхемы. 1           Постановка задачи Спроектировать генератор испытательных сигналов. Устройство должно обеспечивать: 1.         Формирование белого и черного полей. 2.         Формирование шести или двенадцати вертикальных полос с градацией яркости. 3.         ...

Скачать
31331
0
0

... , позади диска Нипкова (рис. 2) располагалась лампа, которая изменениями яркости свечения и формировала изображение: точка за точкой, строка за строкой, кадр за кадром. Рис.2. Телевизор Нипкова Уже в 20-е годы двадцатого века (1920-1922) начитаются первые, пока - нерегулярные, телевизионные трансляции. На современные телевизоры те первые аппараты были похожи меньше всего. Скорее это ...

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

Скачать
50528
0
0

... более дорогостоящими, нежели обычные рентгеновские системы, однако по мере развития компьютерной техники и систем визуализации находят все более широкое применение. Цифровая рентгенодиагностика обеспечивается компьютерной технологией.Дисплей Блок долговременной памяти Устройство документирования Компьютер + память изображенияИнтерфейс данныхПриемник изображения Пациент Рентгеновский аппарат ...

0 комментариев


Наверх