3. Лінійна задача оптимальної швидкодії
Розглянемо лінійну задачу оптимальної швидкодії:
,
, (12)
де ,
,
,
– числові матриці розмірності
та
відповідно.
Область керування задачі – замкнутий обмежений багатогранник в
:
,
, (13)
Якщо для будь-якого вектора , паралельного будь-якому ребру багатогранника
, система векторів
,
, …,
(14) є лінійно незалежною, то багатогранник
задовольняє умові спільності положення відносно системи (14).
Для перевірки лінійної незалежності векторів (13) достатньо перевірити, чи матриця, стовпцями якої є стовпці (12), є невиродженою, тобто
.
Перепишемо формулу (10):
,
,
де ,
–
-і рядки матриць
і
.
Функція Понтрягіна лінійної задачі оптимальної швидкодії має вигляд:
(15)
Оскільки перший доданок у формулі (15) не залежить від , то функція
досягає максимуму за змінною
одночасно з функцією
.
Спряжена система у цьому випадку може бути записана у вигляді:
,
,
або у векторній формі
. (16)
Позначимо через . З теореми 2 випливає, що якщо
– оптимальне керування, то існує такий ненульовий розв’язок
системи (16), для якого в кожний момент часу функція
набуватиме максимального значення за змінною
:
. (17)
Оскільки система (17) з постійними коефіцієнтами не містить невідомих функцій і
, то всі її розв’язки можна легко знайти, після чого, використовуючи їх для розв’язання задачі максимізації функції
на множині
, знаходимо оптимальні керування
.
Для будь-якого нетривіального розв’язання системи (11) співвідношення (14) однозначно визначає керування
, причому це керування кусково стале, а значеннями керування в точках неперервності є вершини багатогранника
.
Точки розриву оптимальної функції керування відповідають зміні значення керування і називаються точками перемикання. Якщо
– точка перемикання, то ліворуч від неї керування має одне значення, наприклад,
, а праворуч інше –
.
Позначимо через підмножину у
виду
. (18)
Якщо всі корені характеристичного рівняння матриці з (14) є дійсними, то для будь-якого розв’язання
рівняння (18) кожна з функцій
є кусково сталою і має не більше ніж
перемикань (
– порядок системи (16)).
Керування називається екстремальним керуванням, якщо воно задовольняє принципу максимуму.
Для лінійної задачі оптимальної швидкодії з областю керування – багатогранником керування
є екстремальним, якщо існує таке нетривіальне розв’язання
системи (17), для якого матиме місце співвідношення (18).
Зрозуміло, що будь-яке оптимальне керування є екстремальним. Тому, щоб знайти оптимальне керування, що переводить фазову точку зі стану у стан
, треба відшукати всі екстремальні керування з цими крайовими умовами, а потім серед них вибрати те, що здійснює перехід за найменший час.
У загальному випадку можуть існувати кілька оптимальних керувань, що переводять фазову точку зі стану у стан
, але якщо початок координат у просторі керувань є внутрішньою точкою багатогранника
, то екстремальне керування єдине. Отже, у лінійних задачах оптимальної швидкодії принцип максимуму дозволяє не тільки визначити вид оптимальних керувань, але й одержати умови єдиності оптимального керування.
Припустимо, що початок координат є внутрішньою точкою багатогранника припустимих керувань. Якщо
і
– два екстремальних керування, що переводять фазову точку зі стану
у стан
за час
і
відповідно, то
і
,
.
У теоремі має місце умова .
Теорема. Якщо існує хоча б одне керування, що переводить систему (17) зі стану у стан
, то існує й оптимальне по швидкодії керування, що також переводить систему з
у
.
... ідно вдосконалювати матеріальне й соціальне стимулювання працівників. Одним з напрямків удосконалювання системи стимулювання праці у АТ «Цукровий комбінат» є реалізація вартісної концепції оплати праці на рівні підприємства припускає зміну системи внутріфірмового керування й стимулювання на основі розвитку внутрівиробничих товарно-грошових відносин між структурними одиницями підприємства аж до ...
... випадків, аварій, а з цим і простоїв на підприємстві, укріпити та створити культуру трудової діяльності. Виконання та розробка дипломного проекту “ Розробка дослідження системи керування електроприводом змінного струму дизель-потягу з використанням нейронних мереж ” відбувається за допомогою комп'ютера, тому питання охорони праці розглядаються щодо забезпечення здорових і безпечних умов роботи ...
... і Рисунок 6.2 – Графік залежності зони нечутливості від зниження втрат7. Оптимальне керування режимом ЕС в темпі процесу Керування потоками потужності в ЕС виконується за допомогою трансформаторів з РПН. Інформація про стан системи, що включає параметри режиму та регулюючих пристроїв отримується з бази даних оперативного інформаційно-керуючого комплексу (ОІКК). На основі поточної інформац ...
... в даній роботі, була опробована й досліджена в реальних умовах моєї професійної діяльності й показала свою працездатність і ефективність. 3. Розробка системи керування та актуалізації інформації web-сайту національного оператора Енергоринка 3.1 Вибір інструментарію для створення web-сайту та системи керування Перед тим, як безпосередньо перейти до створення Web-сайту Національного ...
0 комментариев