3. Нестационарный нагрев длинного круглого вала
Длинный стальной вал диаметром D с начальной температурой tо=20ºС помещен в печь, температура в которой tж. Суммарный коэффициент теплоотдачи к поверхности вала α.
Определить:
1. Время τ1, необходимое для нагрева вала, если нагрев считается законченным, когда температура на оси вала tr=0=tж-20ºС.
2. Значение температуры на поверхности вала tr=Rв конце нагрева.
3. Значение температур на поверхности и оси вала через τ2=(0,2; 0,4; 0,6; 0,8) · τ1 после начала нагрева.
4. Построить в масштабе график изменения температур на поверхности и оси вала в процессе нагрева.
Дано: D=750 мм; tж=1350°С; α=155 Вт/(м2°С)
1. Температуру на оси и на поверхности вала при его нагреве в среде с постоянной tж будем определять с помощью номограмм.
По известным значениям радиуса и коэффициента α найдем значения критерия Био
По номограмме F0=2,3
2. Безразмерную температуру на поверхности вала найдем из номограммы на стр. 257
τ2 | 0,2τ1 | 0,4τ1 | 0,6τ1 | 0,8τ1 |
τ2, с | 5200 | 10400 | 15600 | 20800 |
0,46 | 0,92 | 1,39 | 1,85 | |
Θr=R | 0,3 | 0,14 | 0,054 | 0,023 |
tr=R,°C | 951 | 1164 | 1278 | 1319 |
Θr=0 | 0,45 | 0,2 | 0,08 | 0,035 |
tr=0 | 752 | 1084 | 1244 | 1303 |
4. Сложный теплообмен
Паропровод наружным диаметром d, мм, расположен в большом помещении с температурой воздуха tж, ºС. Температура поверхности паропровода tс1, ºС. Определить тепловые потери с единицы длины паропровода за счет излучения и конвекции и сравнить их. Приведенная степень черноты поверхности εпр. Температуру стен помещения принять равной температуре воздуха, т.е. tс2=tж.
Дано: d=320 мм, tж=29 ºС, εпр=0,8, tс1=300 ºС.
Решение:
Тепловые потери излучением:
Тепловые потери конвекцией
Для определения коэффициента теплоотдачи конвекцией используем критериальное уравнение
При tж=29ºС из таблиц находим Prж=0,7012; λж=2,66·10-2Вт/(м·ºС); υж=15,91·10-6 м2/с.
Значение
Nuж=0,47·(·106)0,25=84
Средний коэффициент теплоотдачи
Тепловые потери конвекцией
Следовательно, потери теплоты излучением 4,5/1,91=2,4 раза больше, чем конвекцией.
... датчика и осциллографа. Экспериментальные кривые зависимости времени τ горения частиц от давления p, соответствуют теоретической зависимости. Представляют интерес экспериментальные исследования процесса горения отдельной угольной частицы, движущейся в потоке газа. Такого рода опыты проводили Н. И. Сыромятников и 3.И.Леонтьева. После воспламенения частицы наблюдалось замедление скорости ее ...
ти, α2 - коэффициент теплоотдачи от оребренной поверхности. Тепловой поток с межреберной поверхности Qм = α2·Ам·(Тw2–Tf2). Тепловой поток с поверхности ребер Qр =α2·Ар·(Тw2 – Tf2)·ψр. Общий тепловой поток с оребренной поверхности Q2,р=α2·(Ам+ψр·Ар)·(Тw2–Tf2), где ψр =Q/Qmax (1). Допускаем, что коэффициент теплоотдачи α2 одинаков для межреберной ...
... ,Sб=pdL, из (2.14) определим временную зависимость толщины оксидной пленки на поверхности проводника: , . (2.15) Дифференциальные уравнения (2.13), (2.14) с учетом уравнений (2.9), (2.5)–(2.12) описывают нестационарный высокотемпературный тепломассообмен и кинетику окисления вольфрамового проводника, нагреваемого электрическим током в газообразной среде, ...
... аппарата будет выглядеть Р 0,6р-0,8-55,8-2К-01-4, его габариты . Вывод Эти простейшие тепловые расчеты двух теплообменных аппаратов одинаковой тепловой производительности показывают, что коэффициент теплопередачи за счет более значительной турбулизации потоков практически в 1,5 раза выше у пластинчатого теплообменника, чем у кожухотрубного. Площадь теплообмена, необходимая для придания
0 комментариев