5. Транзисторные технологии

5.1 Точечные транзисторы

Первым прибором, позволившим получить заметное усиление тока, был точечный транзистор Браттейна и Бардина. Такой транзистор представляет собой кусочек германия n-типа, припаянный к металлическому основанию, которое играет роль базового контакта. Эмиттерным и коллекторным контактами служат две заостренные бронзовые проволочки, прижатые концами к противоположной стороне германиевого элемента (рис. 4). Если расстояние между такими точечными контактами достаточно мало (порядка нескольких десятков микрометров), то можно получить коэффициент усиления тока, превышающий единицу. Удовлетворительный эмиттер можно сделать почти из любого металла, но хороший коллектор обязательно должен содержать примесь n-типа. Коллекторные контакты формируются подачей на коллекторный вывод импульса сильного тока. При этом медь проволочки с большой скоростью диффундирует в материал n-типа коллектора (германий) и в небольшой области превращает его в материал p-типа. Медленно же диффундирующий материал примеси (скажем, фосфор) в непосредственной близости от контакта снова превращает материал в германий n-типа. В результате образуется структура pnpn-транзистора (транзистора с коллекторной ловушкой). Теория, объясняющая работу точечного транзистора образованием pnpn-структуры, оказалась наиболее приемлемой.


Рис. 4. Точечный транзистор, изображенный схематически. Две заостренные проволочки прижаты к полупроводниковому кристаллу n-типа (германий), припаянному к металлическому кристаллодержателю. 1 – латунный или иной кристаллодержатель; 2 – области p-типа; 3 – припой или золотой сплав (контакт базы); 4 – кристалл n-типа; 5 – эмиттерный точечный контакт (бериллиевая бронза); 6 – коллекторный точечный контакт (фосфористая бронза); 7 – область n-типа.

Точечные транзисторы были трудно воспроизводимы при изготовлении и неустойчивы во времени. Когда в 1949 Шокли опубликовал свою теорию транзистора сp-n-переходами, внимание исследователей переключилось на транзисторы с выращенными переходами. Транзисторы с выращенными переходами.Для изготовления первых точечных транзисторов использовался поликристаллический материал с неоднородными характеристиками. Для выращенных переходов требовались германий с содержанием загрязнений менее 1Ч10–8и технология, которая позволяла бы изменять содержание примеси на величину порядка 1Ч10–7.

Зонная очистка. Самый эффективный способ получения кристаллов германия нужной степени чистоты – метод зонной очистки (плавки) – был предложен в начале 1950-х годов У.Пфанном. По этому методу слиток германия, загрязненного примесями, длиной ок. 50 см помещается в графитовой лодочке в длинную горизонтальную кварцевую трубу, которая проходит через ряд нагревательных индукционных катушек. Каждая из них создает узкую зону расплавленного германия, перемешающуюся вдоль слитка со скоростью ок. 25 см/ч. Примеси вместе с движущимися зонами расплава перемещаются к концу слитка, где их собирают и удаляют в отходы. Германий, полученный таким методом, – это, пожалуй, самый чистый из существующих материалов. Далее требует решения вопрос о легировании германия в кристаллической форме.

Вытягивание кристаллов. Способ выращивания кристаллов путем вытягивания из расплава под названием метода Чохральского был известен с 1918, но лишь примерно в 1950 он был успешно применен в технологии полупроводников. Индукционная катушка, окружающая графитовый тигель с чистым германием, наводит токи в графите, нагревая тигель выше точки плавления германия. Все это устройство помещено в прозрачную кварцевую трубу, наполненную инертным газом, как правило аргоном, который защищает поверхность германия от газообразных загрязнений. В расплав вводится примесьn-типа, обычно в виде легированного германия, которая позволяет сформировать коллектор транзистора. Примесь быстро и равномерно распределяется по расплаву. В расплав опускают затравку в виде небольшого монокристалла и медленно вытягивают ее. Германий затвердевает на затравке, и за счет роста в боковом направлении образуется кристалл диаметром ~2,5 см. (Затравку и тигель с расплавом непрерывно вращают для равномерного перемешивания.) Когда образуется кристалл определенного диаметра, его наращивают еще немного и в расплав вводят небольшое количество примесиp-типа. Эта примесь компенсирует первоначальную примесь n-типа и, кроме того, образует новую область кристалла. Материал примеси p-типа быстро и равномерно расходится по расплаву, образуя тонкий слой базы p-типа. После этого еще добавляют примесь n-типа для образования эмиттера, а затем кристалл извлекают из расплава. Хорошие транзисторы получаются, как правило, при отношениях удельного сопротивления добавок примеси примерно 1:10.

Описанный метод плох тем, что из расплава может быть вытянут только один слиток, так как содержание примеси в конечном (эмиттерном) расплаве слишком велико, чтобы он мог служить исходным (коллекторным) расплавом для следующего слоя транзисторов. Но был найден остроумный метод, позволяющий устранить эту трудность.

Примеси накапливаются непосредственно перед перемещающейся в расплаве границей между твердым и жидким материалом. Степень накопления (концентрация) примесей зависит от скорости роста твердой фазы. Если доноры и акцепторы, введенные в жидкую фазу, таковы, что одни из них больше "предпочитают" твердую фазу, чем другие, то при вытягивании кристалла с чередованием ускорения и замедления образуются чередующиеся слои n- иp-типа, и в одном слитке можно получить целый ряд транзисторных слоев.

В результате на большом кристалле образуется полупроводниковаяnpn-структура, пригодная для изготовления транзисторов (сэндвич). Разумеется, таким же способом можно получать и слои pnp-типа. Сэндвич отпиливают от кристалла и разрезают в двух взаимно перпендикулярных направлениях на отдельные транзисторные элементы длиной ок. 3 мм с поперечным сечением 0,6ґ0,6 мм. Эти элементы протравливают для удаления повреждений, возникших при разрезании, и к концам припаивают выводы. Перемещая с помощью микроманипулятора заостренную проволочку толщиной 0,05 мм по поверхности германиевого элемента, электрически определяют участокp-типа проводимости базы и импульсом малого тока приваривают к нему базовый вывод.

У транзисторов с выращенными переходами также имеются существенные недостатки, ограничивающие возможности их применения. Коэффициент усиления таких транзисторов не очень велик. Частота, на которой возможно усиление, ограничивается толщиной базы и при толщине, равной 1 мм, не может быть больше ~5 млн. герц. Транзисторами с выращенными переходами можно пользоваться для передачи низкочастотных сигналов, но они непригодны для цифровых схем и для коммутации. Однако приборы такого типа подтвердили правильность теории и указали путь к более сложным и совершенным транзисторам.

Сплавные плоскостные транзисторы.Сплавной плоскостной транзистор представляет собой тонкую пластинку германия, в которую с разных сторон вплавлены два шарика из индия, образующих эмиттер и коллектор (рис. 5).

Рис. 5. Сплавной плоскостной транзистор типа pnp, показанный схематически в разрезе.

Представляет собой электронный ключ, который открывается и закрывается при изменении направления смещения. Разные варианты такого устройства применяются в компьютерах, телефонном оборудовании и радиоприемниках.

Зонное выравнивание.Исходный материал нужного качества получают методом зонного выравнивания, который можно считать разновидностью метода зонной очистки. В один конец графитовой лодочки помещают соответствующим образом ориентированный затравочный кристалл германия, прижатый к слитку поликристаллического Ge. В торце слитка со стороны затравки имеется прорезь с вложенными в нее небольшими пластинками германия (n-типа), легированного сурьмой. При помощи индукционной катушки осуществляют однократное прохождение по слитку расплавленной зоны материала, легированного сурьмой. На фронте охлаждения зоны остается ровно столько сурьмы, сколько нужно для получения требуемого удельного сопротивления базы n-типа. Такой метод дает слитки удовлетворительного качества длиной ок. 50 см и диаметром 3 см.

Транзисторы изготавливаются из слитков методами массового производства. Тонкие круглые германиевые пластинки шириной около 2,5 мм, тщательно протравленные для удаления повреждений, вызванных разрезанием, загружаются виброустройством в многогнездный держатель. Индиевые шарики засыпаются в распределитель, который кладет по одному шарику на каждую пластинку. Все устройство перемещается через водородную печь; при этом в пластинку вплавляется эмиттер. Затем пластинки переворачивают, и процесс повторяется с несколько более крупными шариками для коллектора. Водород нужен для очистки поверхности германия от окисла, чтобы индий хорошо ее смачивал. Длительность обработки в печи и температуру подбирают так, чтобы толщина базы составляла примерно 0,025 мм.

Кристаллическую ось германия выбирают таким образом, чтобы граница раздела между индием и германием была плоской и параллельной одной из кристаллических плоскостей германия. При этом два перехода, приближающихся друг к другу с противоположных сторон пластинки, оказываются параллельными и могут быть подведены очень близко друг к другу. При охлаждении германий снова кристаллизуется на исходной пластинке. Рекристаллизованная область теперь становится областью p-типа, так как она сильно легирована индием. К оставшемуся за ее пределами индию можно припаять выводы. Транзисторы npn-типа изготавливаются по аналогичной технологии, но в этом случае в исходный германий p-типа вплавляется ввод, легированный сурьмой.

Далее поверхность германия стабилизируют легким протравливанием в щелочном растворе. Затем транзистор высушивают в нагретом воздухе с контролируемой влажностью и герметизируют. Внутри герметического стеклометаллического корпуса имеется "геттерный" влагопоглотитель – обычно крупинка пористого стекла. Контроль за влажностью очень важен, так как коэффициент усиления и токи утечки готового транзистора сильно зависят от количества влаги на поверхности германия вблизи перехода.

Сплавной германиевый транзистор может служить хорошим электронным ключом (для диапазона низких и средних частот), так как сильно легированные области коллектора и эмиттера имеют очень низкое сопротивление (доли ома) и не ограничивают переключаемый ток. Однако его граничная частота тоже не превышает нескольких десятков мегагерц. К сожалению, такой транзистор непригоден для работы при высоких температурах (выше 70–80°C) из-за увеличения тока утечки (который удваивается при повышении температуры на каждые 12 К). Хотя на смену германиевому транзистору со сплавными переходами давно уже пришли кремниевые транзисторы, значительные количества их еще производятся для специальных применений, так как они сравнительно недороги и не требуют больших напряжений для смещения эмиттера в прямом направлении.

Диффузионные германиевые транзисторы. Уже на ранней стадии разработки транзисторов стало ясно, что для улучшения высокочастотных характеристик нужен другой метод контроля толщины перехода. Таким методом явился метод диффузии. Суть его в том, что полированная очищенная тонкая пластинка германия в течение двух часов выдерживается при 650°C под воздействием источника сурьмы. (Для защиты поверхности от загрязнений процесс проводится в атмосфере водорода.) В результате образуется базовый слой толщиной порядка 1 мкм. Алюминиевый эмиттер вплавляется на глубину ок. 0,5 мкм. На поверхность пластинки напылением в вакууме наносится базовый контакт в виде полоски, отстоящей на 12 мкм от эмиттерной. Затем германий вокруг двух полосок вытравливается так, что на пластинке остается ряд меза-структур, каждая из которых содержит активные элементы транзистора (рис. 6).


Рис. 5. ДИФФУЗИОННЫЙ МИКРОТРАНЗИСТОР, сформированный на поверхности довольно большого микрокристалла. Тысячи таких микрокристаллов могут одновременно обрабатываться методом диффузии. 1 – базовая область p-типа; 2 – коллекторный переход; 3 – слой диоксида кремния; 4 – коллекторный контакт; 5 – микрокристалл кремния; 6 – вывод базы; 7 – эмиттерный вывод; 8 – электрическое соединение золото – кремний; 9 – металлический кристаллодержатель; 10 – напыленный электрод; 11 – эмиттерная область n-типа; 12 – эмиттерный переход.Рис. 6. Диффузионный микротранзистор, сформированный на поверхности довольно большого микрокристалла.

Тысячи таких микрокристаллов могут одновременно обрабатываться методом диффузии. 1 – базовая область p-типа; 2 – коллекторный переход; 3 – слой диоксида кремния; 4 – коллекторный контакт; 5 – микрокристалл кремния; 6 – вывод базы; 7 – эмиттерный вывод; 8 – электрическое соединение золото – кремний; 9 – металлический кристаллодержатель; 10 – напыленный электрод; 11 – эмиттерная область n-типа; 12 – эмиттерный переход.

При толщине базы 0,5 мкм номинальная граничная частота достигает 900 МГц, что значительно больше, чем у приборов прежнего типа. Этот успех позволил проектировать схемы, рассчитанные на высокочастотные транзисторы. Высокочастотные германиевые транзисторы нашли применение в электронных схемах спутников связи и в подводных кабелях. Однако для германия так и не были реализованы потенциальные возможности, предоставляемые, в принципе, диффузионным процессом, и он был вытеснен кремнием, у которого на много порядков величины меньше токи утечки. Поэтому кремниевые транзисторы могут работать при температурах до 150°С, а не до 70°С, как германиевые.

Биполярные планарные транзисторы.Современные кремниевые планарные биполярные транзисторы почти полностью вытеснили германиевые из схем на дискретных компонентах в электронной промышленности и широко применяются в интегральных схемах, где германий вообще не используется. (Термин "планарные" означает, что все переходы выходят на поверхность, где они могут быть защищены слоем диоксида кремния. Термин "биполярные" означает, что используются носители обоих типов – и электроны, и дырки, в отличие от полевых транзисторов, о которых будет сказано ниже.)

Появление современного транзистора стало возможным благодаря успешному развитию фотолитографии, диффузии и выращивания кристаллов. Вообще говоря, существуют два вида транзисторных структур – из объемного материала и эпитаксиальная. Первая создается просто на поверхности пластинки из "массивного" кремния. Такой транзистор имеет тот недостаток, что у него большое последовательное сопротивление коллектора, нежелательное в случае переключающего устройства. Этот недостаток отсутствует при использовании эпитаксиального материала – тонкого слоя кремния с высоким удельным сопротивлением (в котором может быть создана транзисторная структура), выращенного поверх толстого слоя сильно легированного материала.


Информация о работе «Полупроводники»
Раздел: Физика
Количество знаков с пробелами: 41666
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
89044
1
4

... : ,(2.8) где фотопроводимость; — константа для данного образца;  — термическая энергия активации проводимости (обычно 0,1—0,3 эв). Знак световых носителей тока у большинства органических полупроводников дырочный. Некоторые адсорбированные пары и газы существенно изменяют фотоэлектрическую чувствительность органических полупроводников. Зависимость фототока от освещенности выражается ...

Скачать
65370
0
1

... resistor – сопротивление. Тиристоры представляют класс полупроводниковых приборов, который подразделяется на диодные (динисторы), триодные (тринисторы), запираемые и симметричные (симисторы).   5. История развития полупроводников После изобретения в 1904 г. Дж. Флемингом двухэлектродной лампы-диода и Л. Де Форестом в 1906 г. трехэлектродной лампы-триода в радиотехнике произошла революция. ...

Скачать
45413
3
5

... с элементарными полупроводниками и полупроводниковыми соединениями набор электрофизических параметров, определяющих возможности применения материалов в конкретных полупроводниковых приборах. Среди алмазоподобных полупроводников, в том числе соединений типа А В , распространены твердые растворы замещения. Необходимыми условиями образования твердых растворов являются кристаллохимическое ...

Скачать
8850
14
2

... ван-дер-ваальсовым силам взаимодействия без учета запаздывания [3]. Таким образом они автоматически учитываются в приведенных формулах. В заключении отметим, что использование диэлектрического формализма и представления о поверхностных плазмонах для описания адгезионных свойств различных материалов дает возможность после значительно меньшей по объему вычислительной работы по сравнени

0 комментариев


Наверх