3. АДАПТИВНІ ІНТЕРФЕРОМЕТРИ НА ОСНОВІ ФРК

Строго кажучи, термін «адаптивна» в певному значенні може застосовуватися і до звичайної голографічної інтерферометрії, заснованої на використанні стандартних нединамічних фоточутливих середовищ, наприклад звичайних фотоматеріалів. Дійсно, вона дозволяє компенсувати складний рельєф об'єкту, що тестується (тобто адаптуватися до нього) і отримувати інформацію виключно про зміни, що відбулися з ним. У випадку фоторефрактивних кристалів ми матимемо справу з безперервною адаптацією до відносно повільних змін форми хвильового фронту. Як буде показано нижче, це необхідно для оптимальної реєстрації швидких його коливань. Таким чином, очікувані застосування подібної методики лежать в області віброметрії, інтерферометричних .датчиков що швидко змінюються в часі або коливальних процесів і т, д.

Поява цього важливого напряму голографічної інтерферометії практично повністю пов'язана з розробкою і впровадженням високочутливих ФРК.

3.1 Ефект енергообміну фазомодульованих світлових пучків

Нехай зразок ФРК освітлюється інтерференційною картиною двох пересікаючихся плоских когерентних світлових пучків однакової інтенсивності, один з яких промодульований по фазі з деякою частотою Ω (рис. 3.1, а). У випадку, якщо частота коливань значно більша зворотного характерного часу формування голограми у ФРК за даних умов його освітлення (Ω >> τsc-1), голограма не встигає «відстежувати» переміщення інтерференційної картини. Проте вона відображає основний ефект, що полягає в перетворенні початкової фазової модуляції одного із світлових пучків на вході ФРК в амплітудну на його виході.

Очевидно, що в іншому граничному випадку при Ω << τsc-1 динамічна фазова голограма встигає відстежувати зсуви інтерференційної картини, тобто адаптуватися до неї. Амплітуда голограми і величина фазового зсуву між гратками і картиною виявляються практично не залежними від часу і співпадають зі своїми стаціонарними значеннями. Якщо проводити аналогію з напівпрозорим дзеркалом, використовуваним зазвичай для спостереження биття між двома лазерними пучками, то в даному випадку ми маємо справу з багатошаровим інтерференційним дзеркалом. Останнє, проте, володіє тією важливою властивістю, що положенння і форма його відзеркалювальних поверхонь, відстежуючи зсув смуг інтерференційної картини, тим самим підтримує величину фазового зсуву між пучками S(d) і R(d)), що інтерферують, на виході схеми постійною. Фактично це і приводить до того, що за наявності достатньо повільної фазової модуляції в одному з вхідних пучків світла інтенсивність вихідних пучків підтримується практично на постійному рівні.

Рис. 3.1 Адаптивний інтерферометр на основі ФРК (a) і його передавальна характеристика (тобто залежність амплітуди вихідного сигналу IRΩ від частоти модуляції F=Ω/2π (б). а: 1 — елемент, в якому здійснюється фазова модуляція снгнального пучка; 2 — зразок ФРК; 3 — фотодетектор, що перетворює модуляцію інтенсивності світлового пучка в електричний сигнал UΩ.

Докладніший аналіз показує, що за наявності: чисто релаксаційного характеру процесу запису-стирання фазової голограми передавальна характеристика подібного адаптивного перетворювача фаза—амплитуда

(3.1)

Тобто вона співпадає з передавальною характеристикою звичайного радіотехнічного RС-кола з постійною часу RC, рівною τsc.

3.2 Практичні застосування і експериментальні дослідження адаптивних інтерферометрів на основі ФРК

Перш за все слід вказати, що розглянутий ефект «динамічної» самодифракції інтерференційної картини, що коливається, є гарним способом досліджень ФРК [16 -19] і інших динамічних голографічних середовищ. Він вельми простий в юстируванні, не вимагає додаткових зчитуючих пучків і дозволяє визначати як амплітуду гратки і кут фазового розузгодження φ, так і характерний час її запису.

Вперше пропозиція по використанню динамічних голограм у ФРК для цілей адаптивної інтерферометії у волоконно-оптичних датчиках була зроблена в [19]. Автори цієї роботи вказали, що пропонована методика дозволяє використовувати в плечах інтерферометра багатомодові оптичні волокна, значно спростити юстування вихідного вузла інтерферометра, а також забезпечити придушення повільних змін в інтерференційній картині, пов'язаних із зміною зовнішніх умов. Дійсно, у високочутливих волоконно-оптичних датчиках з великою довжиною плечей (102—103 м) саме повільний дрейф фазової затримки між плечима інтерферометра через зміну температури або тиску може досягати значної величини (≥103 рад) [20]. Через істотно нелінійний режим роботи фотоприймача при вказаній величині випадкового фазового зрушення спектр корисного високочастотного сигналу розширюється. Використання динамічної голограми дозволяє компенсувати вказаний повільний дрейф фазової затримки і пропустити практично без ослаблення корисний сигнал в діапазоні -частот Ω≥τsc-1.

 



Информация о работе «Практичне застосування фоторефрактивного ефекту»
Раздел: Физика
Количество знаков с пробелами: 40017
Количество таблиц: 0
Количество изображений: 10

0 комментариев


Наверх