4.2.4 Автофокусування випромінювання

В задачі лазерного термоядерного синтезу (ЛТС) існує проблема фокусування потужних світлових імпульсів на мішень малих розмірів. В установках ЛТС треба одночасно вирішувати дві задачі: по-перше, створити потужний світловий імпульс з малою кутовою розбіжністю і, по-друге, точно сфокусувати його на мішень. Використання ОХФ можливе, передусім, для вирішення першої задачі. Але властивості оберненої хвилі дозволяють в принципі розв’язати обидві ці задачі одночасно. Відповідна схема приведена на рис. 4.3.

Імпульс допоміжного лазера невеликої потужності освітлює мішень М. Частина відбитого мішенню випромінювання попадає в апертуру силового лазера, проходить підсилювач і попадає на пристрій ОХФ. Обернена хвиля повторно підсилюється, причому на зворотному проході автоматично компенсуються спотворення, пов'язані як з неоднорідностями підсилювача, так і з недосконалостями виготовлення і юстування фокусуючої системи. В результаті випромінювання точно подається на мішень так, ніби ні в підсилювачі, ні в фокусуючій системі не існує ніяких спотворень. Більш того, при досить широкому пучку допоміжного лазера нема необхідності знати наперед положення мішені: треба лише, щоб освітлена мішень містилася в межах кута бачення ОХФ - системи. Розглянута схема носить назву “ОХФ - самонаведення”. Можлива також ситуація, коли система “мішень – підсилювач – ОХФ - дзеркало” без допоміжної підсвітки утворює своєрідний генератор з жорстким або м'яким режимом самозбудження.

Рис. 4.3 Схема ОХФ самонаведення (автофокусування)

Схема самонаведення працює і в тому випадку, коли на шляху між лазерною установкою і мішенню є значні фазові неоднорідності, наприклад атмосферні. В задачах лазерного зв'язку через атмосферу досить шкідливий вплив викликають турбулентні неоднорідності показника заломлення, які обмежують допустиму дистанцію зв'язку із-за нерегулярного відхилення променів. Схема, яка використовує ОХФ, могла б виглядати слідуючим чином. В тому місці, куди слід передати світловий сигнал, установлюють сигнальний лазер, направлений в бік передавача. Передавач обертає і підсилює сигнальну хвилю і вносить в неї інформацію, наприклад, шляхом модуляції по часу. Використання ОХФ - самонаведення корисно в двох відношеннях: по-перше, для автоматичного контролю правильного напрямку зв'язку, в тому числі при повільному переміщенні приймача і передавача, і, по-друге, для компенсації шкідливої дії неоднорідностей.

Як при самонаведенні, так і при зв'язку швидке відносне переміщення джерела і приймача приводить до ряду додаткових ефектів: повздовжнє переміщення з швидкістю v; - до допплерівського зсуву відбитого сигналу Δω/ω=2v;/с, а поперечне переміщення з швидкістю v^--до кутової похибки самонаведення α^=2v^/с. Методи ОХФ дозволяють компенсувати і навіть використовувати ці ефекти.


ВИСНОВКИ

1. При фоторефракції зміна показника заломлення є оборотною, фоторефрактивні кристали - реверсивні світлочутливі середовища. Що дозволяє використовувати фоторефрактивні кристали в динамічній гологарафії і в пристроях оптичної обробки інформації.

2. Фоторефрактивний ефект має багато різних застосувань деякі з яких розглянуто в даній курсовій роботі. А саме:

− Голографічна інтерферометрія. Застосування ФРК в системах голографічної інтерферметрії найдоцільніше в тих випадках. коли проводиться швидкий якісний контроль виробів при поточному виробництві, безперервному спостереженні за об'єктами або процесами.

− Для енергообміну між фазомодульваними світловими пучками. Можна переводити фазову модуляцію в амплітудну.

− Обернення хвильового фронту і його практичне використаня.

3. Через обмеженість обєму роботи не розглянуто ряд інших важливих засстосувань. Наприклад:

− Так званий фільтр новин. Цей пристрій виконує функцію динамічної фільтрації зображень, виділяючи нестаціонарну (рухому) частину картини, причому може виділяти також і фазові об’єкти.

− В системах голографічної памяті. В елементах упавління оптичних схем і т.д.


ЛІТЕРАТУРА

1.  Фридкин В.М. Фотосегнетоэлектрики.- Москва: Наука, - 1979.- 264с.

2.  Фейберг Дж. Фоторефрактивная нелинейная оптика // Физика за рубежом. Сборник статей. - 1991. - Т.А. - С.162-179.

3.   Glass A.M. The photorefractive effect // Opt.Eng. - 1978. - Vol.17. - P.470.

4.  Кольер Р., Беркхарт К., Лин Л. Оптическая голография. М: Мир, 1973.- 686 с.

5.  Вест Ч. Голографическая интерферометрия;. М.; Мир, 1982. 504 с.

6.  Островский Ю.И., Бутусов М.М., Островская Г.В. Голографическая интерферометрия. М.: Наука, 1977. - 336 с.

7.  Brandt G.В Holographic interferometry//Handbook of optical holography/Ed, by H.J. Caulfieid. New York etc.: Academic Press, 1979. P. 463—502.

8.  Huignагd J.P., Miсherоn F. High-sensitivity read-write volume holographic storage in Bi12SiO20 and В112GеО20 crystals//Appl. Phys. Lett. 1976. Vol. 29, N 9. P. 591—593.

9.  Huignard J.P., Herriаu J.P. Real-time double-exposure irrterferometry with Bi12SiO20 crystals in transverse electrooptic configuration//Appl. Opt. 1977. Vol. 16, N 7. P. 1807—1809.

10.  Herriau J.P., Marrakchi A., Huignard J.P. Conjugaison de phase dans les cristaux BSO. Application an controle destructif en temps reel//Rev. Techn. Thomson—CSF. 1981 Vol. 13, N3. P. 501-520.

11.  Трофимов Г.С., Степанов С.И. Фоторефрактивный кристалл Bi12TiO20 для голографической интерферометрии на длине волны λ=0.63 мкм//Письма в ЖТФ. 1985. Т. 11, № 10. С. 615—621.

12.  Кuchel Е.М., Tiziani H.J. Real-time contour holography using BSO-crystals//Opt. Commun. 1981. Vol. 38, N1. P. 17—20.

13.  Huignard J.P., Herriau J.P., Valentin T. Time average holographic interferomeiry with photoconductive electrooptic Bi12SiO20 crystals/Appl. Opt. 1977. Vol. 16, N 11. P. 2796—2798.

14.  Маrrakchi A., Hiugnard J.P., Herriau J.P. Application of phase conjugation in Bi12SiO20 crystals to mode pattern visualization of diffuse vibrating structures//Opt. Commun. 1980. Vol. 34, N1. P. 15—18.

15.  Степaнов С.И. Фоторефрактивные кристаллы для адаптивной интерферометрии// Оптическая голография с записью в трехмерных средах/Под ред. Ю.Н. Денисюка. Л.: Наука. Ленингр. отд-ние, С.64—74.

16.  Князьков А.В., Кожевников H.M., Кузьминов Ю.С. и др. Энергообмен фазомодулированных световых пучков в динамической голографии//ЖТФ. 1984. Т. 54, №9. С. 1737—1741.

17.  Степанов С.И., Шандаров С.М., Xатьков Н.Д. Фотоупругий вклад в фоторефрактивный эффект в кубических кристаллах//ФТТ. 1987. Т. 29, № Ю- С. 3054—3058.

18.  Dos Santos Р.А., Сеsсatо L., Frejlich J. Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals//Opt. Lett. 1988. Vol. 13, N 11. P. 1014—1016.

19.  Hall T.J., Fiddу М.A., Ner M.S. Detector for an optical-fiber acoustic sensor using dynamic holographic interferometry//Opt. Lett. 1980. Vol. 5,N 11, P. 485—487.

20.  Jackson D.A., Priest R., Dandridge A., Tveten A,B. Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber//Appl. Opt. 1980. Vol. 19, N 17, P. 2926— 2929.


Информация о работе «Практичне застосування фоторефрактивного ефекту»
Раздел: Физика
Количество знаков с пробелами: 40017
Количество таблиц: 0
Количество изображений: 10

0 комментариев


Наверх