4 ТОКОВАЯ ОТСЕЧКА КАБЕЛЬНОЙ ЛИНИИ (КЛ-4)
Находим ток короткого замыкания, кА;
; (4.1)
Выбираем трансформатор тока с коэффициентом трансформации:
Находим вторичный ток срабатывания защиты, А;
; (4.2)
Выбираем реле РСТ-11-32 с минимальным током уставки:
Определяем ступеньку
; (4.3)
Находим уточненный ток срабатывания защиты, А;
; (4.4)
Пересчитываем ток срабатывания защиты в первичный, А;
(4.5)
Находим минимальное значение тока от 20% длины кабельной линии, кА;
; (4.6)
Проверка защиты на чувствительность
; (4.7)
Эта защита не обладает достаточной чувствительностью т.к.
поэтому не принимаем токовую отсечку на реле РСТ-11-29.
5 ТОКОВАЯ ОТСЕЧКА С ВЫДЕРЖКОЙ ВРЕМЕНИ КАБЕЛЬНОЙ ЛИНИИ (КЛ-4)
Первичный ток срабатывания защиты, А;
(5.1)
Где -коэффициент схемы ,принимаем = 1
Выбираем трансформатор тока с коэффициентом трансформации:
Находим вторичный ток срабатывания защиты, А;
; (5.2)
Выбираем реле РСТ-11-19 с минимальным током уставки:
Определяем ступеньку
; (5.3)
Находим уточненный ток срабатывания защиты, А;
; (5.4)
Пересчитываем ток срабатывания защиты в первичный, А;
(5.5)
Проверка защиты на чувствительность
; (5.6)
Время срабатывания защиты, с;
Эта защита обладает чувствительностью т.к. поэтому принимаем токовую отсечку с выдержкой времени на реле РСТ-11-19 с параметрами:
,.
6 МАКСИМАЛЬНО-ТОКОВАЯ ЗАЩИТА КАБЕЛЬНОЙ ЛИНИИ (КЛ 4)
Находим ток срабатывания защиты, кА;
; (6.1)
где kзап. – коэффициент запаса, 1,15;
kсх – коэффициент схемы, 1;
kв – коэффициент возврата максимальных реле тока, 0,9;
Iр.maх.– максимальный рабочий ток , А.
Пересчитываем вторичный ток срабатывания защиты, А;
(6.2)
Выбираем трансформатор тока с коэффициентом трансформации:
Выбираем реле РСТ-11-24 с минимальным током уставки:
Определяем ступеньку
; (6.3)
Находим уточненный ток срабатывания защиты, А;
; (6.4)
Пересчитываем ток срабатывания защиты в первичный, А;
(6.5)
Проверка защиты на чувствительность
; (6.6)
Время срабатывания защиты, с;
Эта защита обладает чувствительностью т.к. поэтому принимаем максимально-токовую защиту на реле РСТ-11-24 с параметрами:
,.
... . Предотвращение возникновения аварий или их развитие при повреждениях в электрической части энергосистемы может быть обеспечено путем быстрого отключения повреждённого элемента, для этого применяется релейная защита и автоматика. Основным назначением РЗ является автоматическое отключение повреждённого элемента (как правило кз) от остальной, неповреждённой части системы при помощи выключателей. ...
... : мм2 < 10 мм2, где: Jэ=1.4 (А/мм2) для Tmax=4000 ч ([1], табл. 1.3.36). Допустимый ток термической стойкости кабеля для предполагаемого времени действия 0.1 с основной релейной защиты (МТО ) на Q13 равен: кА. 1.4 Выбор кабелей, питающих асинхронные двигатели (АД) М1 и М2, М3 и М4 Номинальный ток АД серии АТД исполнения 2АЗМ1-800/6000УХЛ4 ([6], табл. 4.6): А, где: кВт – ...
ют устройства релейной защиты и автоматики. Проектирование релейной защиты и автоматики представляет собой сложный процесс выработки и принятия решений по выбору принципов выполнения релейной защиты. Также решаются вопросы эффективного функционирования устройств релейной защиты и автоматики всех элементов защищаемой схемы, начиная с выбора видов и расчёта уставок проектируемых устройств и кончая ...
... , трансформаторы которой выбираются с учетом взаимного резервирования; · Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР). Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС На рис. 2.1. в ...
0 комментариев