1. Заданный режим
Используя выражение (16) получим:
А2;
А;
Согласно формулам (17), (18) и (19) получим:
А2;
А2; А2;
За расчётный ток принимаем ток второй обмотки, так как он имеет наибольшее значение: А.
2. Режим сгущения:
Используя выражение (16) получим:
А2;
А;
Согласно формулам (17), (18) и (19) получим:
А2;
А2; А2;
За расчётный ток принимаем ток второй обмотки, так как он имеет наибольшее значение: А.
3. Максимальный режим
Используя выражение (16) получим:
А2;
А;
Согласно формулам (17), (18) и (19) получим:
А2
А2; А2;
За расчётный ток принимаем ток второй обмотки, так как он имеет наибольшее значение: А.
1.5 Расчет мощности трансформатора1.5.1 Основной расчет
Для расчета трансформаторной мощности выбираем по каталогу мощность трансформаторов Sн по каталогу в качестве базовой Sн= 2 x 40 =80 МВА;Мощность трансформаторов, необходимую для питания тяги определим по формуле:
, МВ×А (20)
где Kу= 0.97 – коэффициент участия в максимуме районной нагрузки.
Sp.pасч – мощность районных потребителей; согласно исходным данным:
Sp.pасч = 10 МВА;
Мощность тяги
Используя выражение (20) получим:
МВ×А.
По мощности Sнт определим соответствующий ей номинальный ток для двух трансформаторов:
, А (21)
где Uш – напряжение на шинах тяговой подстанции Uш = 27.5 кВ;
Согласно выражению (21) будем иметь:
А.
Кратность нагрузки по обмоткам трансформатора
1. Для заданного количества поездов
; (22)
где Iэо - эквивалентный ток обмотки по нагреву масла для заданного режима, А; Используя выражение (22) получим:
;
2. Для режима сгущения
; (23)
где Iэсг - эквивалентный ток обмотки по нагреву масла для режима сгущения, А;
Используя выражение (23) получим:
;
3. Для максимального режима
, А (24)
Если Kmax ³ 1,5 , то надо выбирать следующий по шкале более мощный трансформатор.
Используя выражение (24) получим:
;
Мощность трансформатора выбираем по средней интенсивности относительного износа витковой изоляции и проверяем по максимальной температуре наиболее нагретой точки обмотки и верхних слоев масла.
Средняя интенсивность износа изоляции обмотки трансформатора в сутки предоставления окна:
, (25)
где
. (26)
где Qинтб - температура наиболее нагретой точки, при которой срок службы трансформатора условно принят за единицу,
Qинтб =980 С;
Qохлс - температура окружающей среды в период восстановления нормального движения, задается в зависимости от района; согласно исходным данным Qохлс = =300С
α = 0.115 - коэффициент, определяющий скорость старения изоляции;
итак,
; (27)
; (28)
В выражении (28)
. (29)
В выражениях (27), (28) и (29):
a, b, g, h - постоянные в выражениях, аппроксимирующие зависимости разности температур обмотка-масло и масло - окружающая среда(они равны: a = 17,7; b = 5,3; g = 39,7; h = 15,3ºC);
to - среднее время хода поезда основного типа по фидерной зоне; to = (48.65+45.3)/120 = 0.78 часа;
τ = 3ч - тепловая постоянная времени масла.
Используя выражение (29) получим:
;
Согласно выражениям (27) и (28) получим:
;
Используя выражение (25) получим:
Так как F1<1 , то по полученной интенсивности износа F1 пересчёт номинального тока производить не надо.
Если F1>1, то полученной интенсивности износа F1 производится пересчёт номинального тока, то есть находится такой ток, при котором относительная интенсивность износа будет номинальной по формуле:
, (30)
где nсг – число суток с предоставлением окон за год;
nсг =суток.
Выбор мощности трансформатора по току Ioном (в предположении, что износ изоляции обмотки происходит только в период восстановления нормального движения после окна) занижает мощность не более чем на 8%, поэтому необходимая расчетная мощность лежит в пределах [Smin и Smax], которые определяются по формулам:
Smin = Kу×( 3× I0ном×Uш + Sp.pасч); (31)
Smax= Kу×( 3×K×I0ном×Uш + Sp.pасч); (32)
где Kу = 0,97 ; K = 1,08.
Используя выражения (31) и (32) получим:
Smin = Kу×( 3× I0ном×Uш + Sp.pасч) = 0.97×(3×878.8×27.5 + 10×103) = 80025.97 кВА;
Smax= Kу ×( 3×K×I0ном ×Uш + Sp.pасч) = 0.97×(3×878.8×1.08×27.5 + 10×103) = 85652.05 кВА;
... и 5 поездов: . По результатам расчета строятся гистограммы распределения числа поездов (см. рис. 2 и 3). Рис. 2 Рис. 3 3. Расчет необходимых электрических величин Назначение расчетов системы электроснабжения и величины, определяемые при этих расчетах, изложены в /4/. В курсовом проекте используются два метода расчета - метод равномерного сечения графика движения поездов и ...
... работы таких систем, методов их расчетов и проектирования и привело к появлению науки об электроснабжении электрифицированных железных дорог. Целью данной курсовой работы является расчет системы электроснабжения участка постоянного тока методом равномерного сечения графика. Для этого необходимо решить ряд задач: -построить график поездов; -определить токи фидеров; -составить и рассчитать ...
... сети Экономическая оценка работы спроектированной системы тягового электроснабжения не может быть выполнена без оценки потерь электроэнергии в ее элементах. Потери электроэнергии в системе тягового электроснабжения складываются, в основном, из потерь в тяговой сети и потерь в трансформаторах. Ниже выполнен расчет этих потерь. В результате расчета получены: значения годовых потерь энергии в ...
... , но и по вертикали, а это снижает возможность их схлестывания. В процессе разработки тяговой сети с ЭУП были проведены оптимизационные расчеты взаимного размещения экранирующего и усиливающего проводов по всему комплексу влияющих параметров и определены оптимальные расстояния. Так, расстояние между контактным проводом и усиливающим должно составлять 4.5м, между опорой и экранирующим проводом и ...
0 комментариев