5.3 Расчет действующего значения периодической составляющей тока для произвольного момента времени.
В приближенных расчетах периодическую составляющую тока в точке КЗ для произвольного момента времени определяют по одному из двух методов:
1) метод расчетных кривых;
2) метод типовых кривых.
Выбор метода расчета и соответствующих кривых зависит от поставленной задачи, мощности генератора, системы возбуждения и постоянной времени возбуждения.
Расчетные кривые используются для турбогенераторов мощностью до 300 МВТ c АРВ. На рис.5.7 и 5.8 приведены расчетные кривые токов короткого замыкания турбогенераторов средней мощности до 100 МВТ [1]. и 200 – 300 МВТ [8] соответственно.
Типовые кривые используются для турбогенераторов мощностью до 1200 МВТ с системами возбуждения различного типа. На рис. 5.9-5.12 приведены типовые кривые для различных групп турбогенераторов с учетом современной тенденции оснащения генераторов разных типов определенными системами возбуждения [10].
Рисунок 5.7 Расчетные кривые токов к.з. турбогенератора
средней мощности до 100 МВТ с АРВ, =0,57 с.
Рисунок 5.8.Расчетные кривые токов к.з. типового турбогенератора 200 – 300 МВт с АРВ
а) с постоянной времени возбудителя Те=00,15с.
б) с постоянной времени возбудителя Те=0,20,3с.
Рисунок 5.9 Типовые кривые изменения периодической составляющей тока КЗ от турбогенераторов с тиристорной независимой системой возбуждения | Рисунок 5.10 Типовые кривые изменения периодической составляющей тока КЗ от турбогенераторов с тиристорной системой самовозбуждения |
На рис. 5.9 представлены типовые кривые для турбогенераторов с тиристорной независимой системой возбуждения (СТН) - генераторов типов ТВВ-300-2ЕУЗ, ТВВ-500-2ЕУЗ, ТВВ-800-2ЕУЗ, ТГВ-300-2УЗ, ТГВ-800-2УЗ; при построении кривых приняты кратность предельного напряжения возбуждения = 2,0 и постоянная времени нарастания напряжения возбуждения при форсировке возбуждения = 0,02 с.
На рис. 5.10 представлены типовые кривые для турбогенераторов с тиристорной системой параллельного самовозбуждения (СТС) - генераторов типов ТВФ-100-2УЗ, ТВФ-110-2ЕУЗ, ТВФ-120-2УЗ, ТВВ-160-2ЕУЗ, ТВВ-167-2УЗ, ТВВ-200-2АУЗ, ТВВ-220-2УЗ, ТВВ-220-2ЕУЗ, ТГВ-200-2УЗ, ТЗВ-220-2ЕУЗ, ТЗВ-320-2ЕУЗ; при построении этих кривых приняты = 2,5 и = 0,02 с.
На рис. 5.11 представлены типовые кривые для турбогенераторов с диодной независимой (высокочастотной) системой возбуждения генераторов типов ТВФ-63-2ЕУЗ. ТВФ-63-2УЗ, ТВФ-110-2ЕУЗ; при построении кривых приняты = 2,0 и =0,2 с.
| |||
Рисунок 5.11 Типовые кривые изменения периодической составляющей тока КЗ от турбогенераторов с диодной независимой (высокочастотной) системой возбуждения | Рисунок 5.12 Типовые кривые изменения периодической составляющей тока КЗ от турбогенераторов типов ТВВ-1000-2УЗ и ТВВ-1200-2УЗ с диодной бесщеточной системой возбуждения | ||
На рис. 5.12 представлены типовые кривые для турбогенераторов с диодной бесщеточной системой возбуждения (СДБ) - генераторов типов ТВВ-1000-2УЗ и ТВВ-1200-2УЗ; при построении кривых приняты = 2,0 и = 0,15 с.
Все кривые получены с учетом насыщения стали статора, насыщения путей рассеяния статора, вызванного апериодической составляющей тока статора, эффекта вытеснения токов в контурах ротора и регулирования частоты вращения ротора турбины. При этом предполагалось, что до КЗ генератор работал в номинальном режиме.
В тех случаях, когда расчетная продолжительность КЗ превышает 0,5 с, для расчета периодической составляющей тока в произвольный момент времени при КЗ на выводах турбогенераторов допустимо использовать кривые, приведенные на рис. 5.13, а при КЗ на стороне высшего напряжения блочных трансформаторов - кривые, приведенные на рис. 5.14. Как на рис. 5.13, так и на рис. 5.14 кривая 1 относится к турбогенераторам с диодной бесщеточной системой возбуждения, кривая 2-с тиристорной независимой системой возбуждения, кривая 3-с диодной независимой (высокочастотной) системой возбуждения и кривая 4 - с тиристорной системой самовозбуждния.
Рисунок 5.13. Типовые кривые изменения периодической составляющей тока КЗ от турбогенераторов с различными системами возбуждения при трехфазных КЗ на выводах генераторов | Рисунок 5.14. Типовые кривые изменения периодической составляющей тока КЗ от турбогенераторов с различными системами возбуждения при трехфазных КЗ на стороне высшего напряжения блочных трансформаторов |
Типовые кривые для синхронного электродвигателя приведены на рис. 5.15, а для асинхронного электродвигателя - на рис. 5.16.
| Рисунок 5.15. Типовые кривые для синхронного электродвигателя | Рисунок. 5.16. Типовые кривые для асинхронного электродвигателя |
На рис.5.17 приведены типовые кривые для расчета периодической составляющей тока в точке КЗ для произвольного момента времени при связи генератора и электрической системы с точкой КЗ через общее сопротивление [2].
Рисунок 5.17. Типовые кривые для определения периодической составляющей тока КЗ синхронных машин с тиристорной или высокочастотной системой возбуждения и синхронных компенсаторов.
... на постоянном оперативном токе. Рисунок 1 – Схема распределительной сети На рисунке обозначено: ПГТВ – защита от перегруза токами высших гармоник; – температурные указатели, указатели циркуляции масла и воды в системе охлаждения с действием на сигнал. 1. Расчет токов короткого замыкания Величина токов короткого замыкания для ряда защит (дифференциальных, токовых отсечек и т.д.) ...
... . Предотвращение возникновения аварий или их развитие при повреждениях в электрической части энергосистемы может быть обеспечено путем быстрого отключения повреждённого элемента, для этого применяется релейная защита и автоматика. Основным назначением РЗ является автоматическое отключение повреждённого элемента (как правило кз) от остальной, неповреждённой части системы при помощи выключателей. ...
... схемы замещения нулевой последовательности 8.4 Определение токов и напряжений в месте повреждения К1 8.4.1 Двухфазное короткое замыкание на землю Введение Курсовая работа выполняется по теме «Расчет симметричных и несимметричных коротких замыканий в электроэнергетической системе» В работе рассчитываются токи и напряжения при симметричном и несимметричном коротких замыканиях (КЗ). В ...
... BК £ Iтерм2 ×tтерм Выбор разъединителей. Разъединители используют для включения и отключения обесточенных участков электрической цепи под напряжением. Выбор разъединителей производится по тем же параметрам что и выключатели, кроме условия по отключающей способности. [3] В соответствии с перечисленными условиями (1.1 - 1.5) выбираем на стороне 10 кВ разъединитель РЛНД - 10/200 ...
0 комментариев