5.2 Определение сопротивления элементов сети

Так как расчет выполняется в именованных единицах, то для всех элементов сети определяем значение полного сопротивления.


5.2.1 Определение полного сопротивления трансформаторов Т1 и Т2 со всех сторон напряжения:

Так как трансформаторы имеют одинаковую мощность и марку, то расчет выполняем только для трансформатора Т1.

Перед определением полного сопротивления трехобмоточного трансформатора необходимо привести значение его напряжений короткого замыкания к расчетным величинам;

Uкн = 0,5(Uквн+Uксн-Uквс) = 0,5(17,5+6,5-10,5) = 6,75 %

Uкв = 0,5(Uквн+Uквс-Uксн) = 0,5(17,5+10,5-6,5) = 10,75 %

Uкс = 0,5(Uквс+Uксн-Uквн) = 0,5(10,5+6,5-17,5) = 0,25 %

Расчет полного сопротивления выполняем по формуле:

 (5.1)

где: Sm-полная мощность трансформатора (кВА);

Uк %-напряжение короткого замыкания выраженное в процентах;

Um-напряжение на обмотке трансформатора, для которой производится расчет полного сопротивления (кВ).

5.2.1.1 Определение полного сопротивления трансформатора Т1 на стороне высокого напряжения 110 кВ:

 

5.2.1.2 Определение полного сопротивления трансформатора Т1 на стороне среднего напряжения 35 кВ:


 

5.2.1.3 Определение полного сопротивления трансформатора Т1 на стороне низкого напряжения 10 кВ:

 

5.2.2 Определение сопротивлений воздушных линий выполняется по формулам:

(5.2)

 (5.3)

 (5.4)

где: Ro и Xo-активное и индуктивное сопротивление 1км провода (Ом/км) [2];

l-длинна линии (км);

5.2.2.1Определение активного, индуктивного и полного сопротивления линии 110 кВ:

 Ом

 Ом

 Ом

5.2.2.2 Определение активного индуктивного и полного сопротивления линии 35 кВ:


 Ом

 Ом

 Ом

5.2.2.3 Определение активного индуктивного и полного сопротивления линии 10кВ:

 

 

 

5.2.2.4 Определение полного эквивалентного сопротивления на стороне высокого напряжения трансформатора Т1:

 

 

5.3 Преобразование расчетной схемы с приведением значений сопротивления к напряжению короткого замыкания

Приведение значений полного сопротивления схемы выполняется через коэффициент трансформации к стороне, на которой считается напряжение короткого замыкания и выражается формулой:

 (5.5)

где: Z-приводимое полное сопротивление (Ом);

U1-напряжение на высокой стороне (кВ);

U2-напряжение на низкой стороне (кВ).

5.3.1 Приведение значений полного сопротивления схемы при возникновении короткого замыкания на стороне 10 кВ:

Приведение значения полного сопротивления системы:

 

5.3.2 Приведение значения полного эквивалентного сопротивления со стороны высокого напряжения трансформатора Т1:

 


5.3.3 Приведение значения полного сопротивления системы:

 

5.3.4 Приведение значения полного эквивалентного сопротивления со стороны высокого напряжения трансформатора Т1:

 

 

5.4 Определение значений полного суммарного сопротивления в точках короткого замыкания на стороне 10 кВ

5.4.1 Определение значения полного эквивалентного сопротивления со стороны низкого напряжения трансформатора Т1:

 Ом

5.4.2 Определение значения полного эквивалентного сопротивления подстанции на шинах 10кВ (в точке К4):

Ом

 Ом


5.4.3 Определение значения полного суммарного сопротивления подстанции на стороне 10 кВ (в точке К5):

 

 

5.5 Определение значений полного суммарного сопротивления в точках короткого замыкания на стороне 35 кВ

5.5.1Определение значения полного эквивалентного сопротивления со стороны среднего напряжения трансформатора Т1:

 Ом

5.5.2 Определение значения полного эквивалентного сопротивления подстанции на шинах 35 кВ (в точке К2):

Ом

 Ом

5.5.3 Определение значения полного суммарного сопротивления подстанции на стороне 35 кВ (в точке К3):

 Ом


5.5.4 Определение значений полного сопротивления в точке короткого замыкания на стороне 110кВ:

 Ом

 

5.6 Определение значения тока трехфазного короткого замыкания на проектируемой подстанции

Значение тока трехфазного короткого замыкания определяем по формуле:

(5.6)

где: U-напряжение в точке короткого замыкания (В):

Z-полное сопротивление в точке короткого замыкания (Ом):

5.6.1 Определяем значение тока трехфазного короткого замыкания в точке К1:

 А

5.6.2 Определяем значение тока трехфазного короткого замыкания в точке К2:

 А


5.6.3 Определяем значение тока трехфазного короткого замыкания в точке К3:

 А

5.6.4 Определяем значение тока трехфазного короткого замыкания в точке К4:

 А

5.6.5 Определяем значение тока трехфазного короткого замыкания в точке К5:

 А

  5.7 Определение значения ударного тока трехфазного короткого замыкания на проектируемой подстанции

Ударный ток трехфазного короткого замыкания определяем по формуле:

(5.7)

где: Iк-ток короткого замыкания (А);

kу-ударный коэффициент равный 1,8 для подстанций с высшим напряжением 110кВ; [2]

5.7.1 Определяем значение ударного тока трехфазного короткого замыкания в точке К1:

 A

5.7.2 Определяем значение ударного тока трехфазного короткого замыкания в точке К2:

 A

5.7.3 Определяем значение ударного тока трехфазного короткого замыкания в точке К3:

 A

5.7.4 Определяем значение ударного тока трехфазного короткого замыкания в точке К4:

 

 A

 

5.7.5 Определяем значение ударного тока трехфазного короткого замыкания в точке К5:

 A


5.8 Определение значения теплового действия тока трехфазного короткого замыкания на проектируемой подстанции

Учитывая что проектируемая подстанция питается от централизованной энергосистемы и короткие замыкания, происходящие на ней, находятся на удаленных участках от источника, тепловой импульс тока трехфазного короткого замыкания определяем по формуле:

(5.8)

где: Iк-ток короткого замыкания (кА);

tрз- время срабатывания релейной защиты

tрз=0,1 при 35...110 кВ;

tрз=0,15 при 0.4...10 кВ;

Ta- время затухания апериодической составляющей тока трехфазного КЗ

Ta=0,04 при 35...110 кВ;

Ta=0,04 при 0.4...10 кВ;

5.8.1 Определяем значение теплового импульса тока трехфазного короткого замыкания в точке К1:

 

5.8.2 Определяем значение теплового импульса тока трехфазного короткого замыкания в точке К2:

 


5.8.3 Определяем значение теплового импульса тока трехфазного короткого замыкания в точке К3:

 

5.8.4 Определяем значение теплового импульса тока трехфазного короткого замыкания в точке К4:

 

5.8.5 Определяем значение теплового импульса тока трехфазного короткого замыкания в точке К5:

 

Результаты расчета токов короткого замыкания сведены таблицу 5.1.

Таблица 5.1.

Результаты расчета токов короткого замыкания

Точка короткого зам-ния.

Номинальное

напряжение в точке к.з.

Uн (кВ)

Ток трехфазнго

к.з.

Iк (А)

Ударный

ток к.з.

i у (кА)

Тепловой импульс тока к.з.

Bк (кАІс)

1 110 3244,8 8,259 1,47
2 35 3583,9 9,0314 1,79
3 35 844,9 2,1291 0,1
4 10 12796 32,245 31,1
5 10 933,8 2,353 0,16
6. Выбор и проверка оборудования подстанции

 

Выбор и проверку оборудования подстанции выполняем на основе произведенного в разделе 5 расчета токов короткого замыкания результаты которого сведены в таблицу 5.1.

  6.1 Выбор источника оперативного тока и трансформаторов собственных нужд подстанции

 

6.1.1 Для дистанционного управления (отключения, включения) выключателями, в том числе автоматического отключения их релейной защитой, а также действия различных вспомогательных реле, устройств автоматики, аппаратуры сигнализации, обогрева шкафов КРУН, освещения подстанции и т.п. требуются источники энергии, которые называются источниками оперативного тока. Так как проектируемая подстанция подключена к сети с напряжением на высокой стороне 110 кВ рекомендуется применять переменный оперативный ток.

Производим выбор источников оперативного тока.

6.1.2 Тансформаторы собственных нужд подстанции устанавливаются на стороне 10 кВ и подключаются до вводного выключателя 10 кВ, что позволяет иметь оперативный ток при отключенной системе сборных шин 10 кВ.

6.1.3 Определим мощность трансформаторов собственных нужд и выберем марку трансформатора.

Мощность трансформатора собственных нужд зависит от количества и мощности его потребителей.

На подстанции к потребителям собственных нужд относятся: обогрев шкафов КРУН, освещение подстанции, подогрев приводов разъединителей, отделителей и короткозамыкателей и другие устройства.

Состав потребителей собственных нужд представлен в таблице 6.1; взято из однолинейной схемы и данных “Службы подстанций” ДОАО “Костромаэнерго”.

Для определения мощности трансформаторов собственных нужд необходимо определить суммарную мощность потребителей собственных нужд.

Определим суммарную мощность потребителей:

Sсн =78+43,8+5+3+6,5+9+23+36+9,4+9+12+10,6 = 245,9 кВА

Так как на подстанции установлено два трансформатора собственных нужд, то их мощность определяем из условия:

Sтсн ³ 0.5 Sсн Sтсн > 123 кВА

Выбираем два трансформатора марки ТМ-160/10 мощностью 160 кВА,

Uвн=10кВ Uнн=0,4кВ DPх=0,82 кВт DPк=3,7 кВт [11]

6.1.4 Трансформаторы тока и трансформаторы напряжения также являются источниками оперативного тока. К их потребителям относятся системы релейной защиты, измерительные приборы и устройства контроля изоляции.


Таблица 6.1.

Расчетная таблица потребителей собственных нужд.

Потребители собственных нужд

Sпот

кВА

Количество, шт

Sполн

кВА

Подогрев шкафов КРУН-10 6 13 78
Подогрев шкафов КРУН-35 7,3 6 43,8
Освещение подстанции 5 5
Аварийное освещение 3 3
Подогрев ВК-10 0,5 13 6,5
Подогрев ВТ-35 1,8 5 9
Подогрев привода разъединителя 35кВ 2,3 10 23
Подогрев привода разъединителя 110кВ 4,5 8 36
Подогрев привода короткозамыкателя 110кВ 4,7 2 9,4
Подогрев привода отделителя110кВ 4,5 2 9
Система пожаротушения 12 12
Система охлаждения трансформатора 5,3 2 10,6

Произведем расчет и выбор трансформаторов тока и напряжения.


Информация о работе «Реконструкция электроснабжения зоны подстанции "Рождественское" и "Василево" Шарьинских электрических сетей с обоснованием использования однофазных трансформаторов»
Раздел: Физика
Количество знаков с пробелами: 81549
Количество таблиц: 19
Количество изображений: 7

0 комментариев


Наверх