3. Розрахунок електромагнітного реле
Розрахунок провідності робочого зазору
Розрахунок магнітного ланцюга зводиться до обчислення магнітної провідності робочих і неробочого повітряних зазорів, провідності витоку, коефіцієнта розсіювання потоку й похідної провідності робочого зазору для декількох положень якоря.
Вихідні дані:
Ширина полюсного наконечника d=0,017м;
Товщина полюсного наконечника c=0,00005 м.
Відстань від осі обертання якоря до осі симетрії сердечника магнітної системи R0=0,01425 м.
5. товщина немагнітної прокладки =0.001 м;
6. товщина скоби a=0,003 м;
Розрахункова формула для провідності має вигляд:
,(3.1.1)
де:( - величина робочого повітряного зазору;
h0 =4p×10-7 Гн/м - магнітна постійна;
К - коефіцієнт, що враховує нерівномірність магнітного поля
, r=2R0/d=1,68
де Rр – магнітний опір робочого повітряного зазору, Гн-1.
Потім розрахуємо магнітний опір робочого повітряного зазору Rр по формулі:
; (3.1.2)
Похідна магнітної провідності має вигляд:
.(3.1.3)
Обчислення магнітної провідності виробляються для трьох значень робочих повітряних зазорів: d1=0,5×10-3 м; d2=1×10-3 м; d3=1,5×10-3 м.
Отримані значення магнітної провідності й похідній магнітної провідності зводимо в табл. 1.
при др1= 0,5 ·10-3м:
при др2=1,0 ·10-3м:
при др3=1,5 ·10-3м:
Таблиця 1 - Значення магнітної провідності й похідній магнітної провідності.
dp×10-3, м | 0,5 | 1,0 | 1.5 |
Gp×10-7, Гн | 7,305 | 3,98 | 2,82 |
Rp×10-7, Гн-1 | 0.1369 | 0.2513 | 0.355 |
×10-4, Гн/м | 12.98 | 3.419 | 1.572 |
Побудуємо графік залежності Gp=f(dp) Малюнок 2
Розрахунок магнітної провідності неробочого зазору
Розрахуємо магнітну провідність неробочого повітряного зазору, що перебуває між прямокутним якорем, розташованим під кутом, і прямокутною скобою. При цьому приймаємо наступні допущення:
зазор утворений двома паралельними площинами;
крайові потоки дорівнюють нулю й магнітній провідності визначається по спрощеній формулі:
,(3.2.1)
гдеGн- магнітна провідність неробочого зазору, Гн;
Sн- площа неробочого зазору, м2;
дн-н- величина неробочого зазору, м;
значення неробочого зазору визначається посередині скоби магнітної системи.
Вихідні дані:
товщина скоби a = 0.003 м;
ширина скоби b = 0,0155 м;
постійна частина неробочого повітряного зазору Д = 0,00005 м.
Неробочий зазор складається із частини, що змінюється, залежної від величини робочого зазору й постійної частини, обумовленою немагнітною прокладкою: (3.2.2)
де дн'- частина, що змінюється, неробочого зазору, м.
(3.2.3)
Відповідно до прийнятих значень робочого повітряного зазору розрахуємо значення неробочого повітряного зазору по (3.2.2), його магнітну провідність по (3.2.1) і магнітний опір по (3.1.2).
при др1=0,5 ·10-3м:
.
при др2=1,0 ·10-3м:
.
при др3=1,5 ·10-3м:
.
Результати розрахунків наведені в таблиці 2:
Таблиця 2
dp×10-3,м | 0.5 | 1.0 | 1.5 |
d’нз×10-3,м | 0,1026 | 0,1553 | 0,2079 |
Gн×10-7, Гн | 5,69 | 3,761 | 2,809 |
Rн×107, Гн | 0,176 | 0,2659 | 0,356 |
Розрахуємо магнітну провідність неробочого повітряного зазору між прямокутною скобою й підставою циліндричного сердечника (зазор обумовлений наявністю немагнітного покриття цих деталей і нещільністю їхнього прилягання). Магнітну провідність розрахуємо без обліку крайових потоків по формулі (3.2.4).
(3.2.4).
Вихідні дані:
приймемо зазор рівним дн1=15·10-6м;
діаметр сердечника dс=9 ·10-3м.
.
Магнітний опір цього зазору:
.
Розрахунок провідності зазору витоку
Розрахуємо магнітну провідність зазору витоку, утвореного паралельними циліндричним сердечником і прямокутною скобою (малюнок 3).
Малюнок 3. Спрощене зображення магнітного поля
Магнітний потік витоку (розсіювання) замикається крім робочого повітряного зазору. Потоки розсіювання є розподіленими й замикаються усередині контуру муздрамтеатру й поза ним. При розрахунку будемо враховувати тільки магнітні потоки, що замикаються усередині контуру муздрамтеатру. Приймемо висоту зони розсіювання рівній висоті котушки електромагніта.
Питома магнітна провідність зазору витоку визначається по формулі (3.3.1).
(3.3.1),
Де = 0.87 - коефіцієнт, що залежить від співвідношення b і h.
(3.3.2).
Повна провідність зазору витоку:
(3.3.3),
де – висота котушки, м.
Наведену магнітну провідність повітряного зазору для потоку розсіювання визначимо по формулі (3.3.4).
(3.3.4).
Виходячи з вищенаведених формул, визначимо питому й наведену магнітну провідність зазору витоку.
Вихідні дані:
Відстань від сердечника до прямокутної скоби h=11,25 ·10-3м;
висота катушки H=47 ·10-3м.
,
,
,
.
Наведений магнітний опір зазору витоку:
.
Розрахунок коефіцієнтів розсіювання струму
Коефіцієнт у розсіювання потоку визначається через магнітні провідності по формулі (3.4.1).
(3.4.1).
Підставимо в (3.4.1) значення провідності робочого й неробочого зазорів і провідність витоку:
,
,
.
Результати розрахунків наведені в таблиці 3
0,5 | 1,0 | 1,5 | |
1,322 | 1,592 | 1,732 |
... 358=41,21 т/на добу Продуктивність печі встановлюють за більшим розрахунковим показником. Кількість печей залежить від загальної кількості працюючих машин і кількості машино ліній в цеху. При виробництві тарного скла приймаємо одну піч продуктивністю 50 т/на добу. Кількість шихти на річну програму становить: Ш= К·(q/100)·Е де К- коефіцієнт, що враховує співвідношення шихти і ...
... , геологічні розрізи. В розділі технологія будівельного виробництва було вивчено науково-теоретичні положення сучасної технології будівельного виробництва і оволодіння практичними методами проектування технологічних процесів. Розроблені технологічні карти виконання робіт по зведенню монолітного каркасу, до яких входять: схема монтажу, схема організації робочого місця при бетонуванні вертикальних ...
... /U = 24.5/24 = 1.02 А - загальний споживаний струм. Отже для живлення четвертого контролера потрібно: (1020+280)/З00 = 3.8/2 = 1.9 = 2 блока БП-21 Для функціонування системи автоматизації необхідне її електричне живлення. Проектування систем електроживлення ведуть на основі завдання на основі проектування функціональної схеми автоматизації (аркуш 1), принципових електричних схем управління, ...
... лише в деяких випадках, то практичне значення має зміна С за рахунок зміни закріплення країв пластини. Зміну товщини чи схеми кріплення плати можна здійснити практично завжди. 2.9 Віброзахист обчислювальної техніки Всі види радіоелектронної апаратури зазнають зовнішніх або внутрішніх механічних дій. Механічні дії передаються кожному елементу і викликають їх вібрації. Викликані вібрації ...
0 комментариев