5. Методы обработки результатов косвенных измерений
Косвенные измерения − это измерения, результат которых определяют на основании прямых измерений величины, связанной с измеряемой величиной известной зависимостью (известными математическими формулами).
Уравнение косвенных измерений имеет вид
y=f(x1, x2, …xn)
где y − искомая величина, являющаяся функцией величин x1, x2 … xn , полученных методом прямых измерений.
На практике для определения искомой величины зачастую необходимо иметь результаты нескольких независимых наблюдений величин x, y, z, которые образуют функцию f = f(x, y, z).
Функция f предполагается дифференцируемой по всем переменным, а также предполагается, что на интервалах, куда попадают значения x, y, z функции f не имеет нулей частных производных.
Обозначение функции fi = f(xi, yi, zi)
Существуют два метода обработки результатов косвенных измерений:
− метод переноса погрешностей;
− выборочный метод.
Обработка результатов измерений методом переноса погрешностей.
Этот метод используется в случае, когда каждая из величин x, y, z, представляющих собой аргументы функций, измеряется независимо от остальных в своей серии опытов, и эти величины организуют выборку (или они близки друг к другу). Число опытов в сериях не обязательно должно быть одинаково, но обязательным условием остается неизменность условий для прямого измерения величин в своей серии, неизменность условий для f во всех сериях и взаимная независимость всех опытов.
Обработка полученных данных измерений каждого опыта производится по алгоритму прямых измерений с многократным наблюдением.
Рассчитать значение функции
= f(
,
,
)
Вычислить частные производные от функций
,
, ![]()
Или, для легко логарифмируемой функции f, от ее логарифма
![]()
Вычислить полную погрешность функции
![]()
(формула переноса погрешностей) или по эквивалентной формуле для легко логарифмируемой функции
![]()
Результаты измерений представляются в форме
P %, n
6. Обработка данных косвенных измерений выборочным методом
Этот метод применяется в том случае, если совместно измеренные значения аргумента функции xi, yi, zi не образуют выборок, но можно создать выборку значений функции {f}.
По каждому набору совместно измеренных значений аргументов рассчитать значения функции fi = f(xi, yi, zi).
Провести обработку полученной выборки {fi} согласно алгоритму обработки данных прямых измерений, находя среднее значение
и случайную погрешность ∆f функции.
Произвести вывод выражений для частных производных от функции
![]()
или для легко логарифмируемой функции f − от ее логарифма
![]()
По каждому набору совместно измеренных значений аргументов и погрешности СИ рассчитать погрешность СИ функции
![]()
Предполагается, что погрешности СИ измеряемых величин могут быть разными в разных опытах или, если функция имеет удобный для логарифмирования вид, по эквивалентной формуле
![]()
где fi − соответствующее данному набору аргументов значение функции.
Вычислить среднюю погрешность СИ функции
![]()
Если погрешности СИ аргументов одинаковы во всех опытах или при нахождении максимальных по всей серии опытов значений погрешностей СИ Иx = maxИxi, Иy = maxИyi, Иz = maxИzi, для определения погрешности СИ величины f можно использовать выражение
![]()
где
,
,
.
Вычислить полную погрешность функции ![]()
Результаты измерений представляются в форме
P %, n
Методы обработки результатов совместных измерений.
Совместными называют производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимости между ними. Уравнение совместных измерений имеет вид
yi = f (x1i, x2i, …, xni ; a, b, c, ...), i = 1, 2, ..., n,
где yi, x1i, x2i, ..., xni – значения величин, измеренных одновременно (прямо или косвенно) в i-й измерительной операции; а, b, с, ... – неизвестные искомые величины. Если число уравнений превышает число неизвестных, то эти уравнения в отличие от обычной системы уравнений называют условными. Для решения полученной системы используют метод наименьших квадратов.
Задача нахождения наилучшей аппроксимилирующей кривой в общем случае является достаточно сложной и наиболее просто решается, если функциональная зависимость имеет вид прямой линии y = ax + b. Поэтому на практике, если это возможно, сложные функциональные зависимости сводят к линейным зависимостям. При этом задача нахождения регрессионной кривой сводится к решению следующих задач:
− линеаризация нелинейных зависимостей, которая производится путем соответствующей замены переменных с целью получения новой функции,
− нахождение наилучших значений коэффициентов a и b в линейной зависимости y = ax + b или коэффициента a в линейной зависимости
y = ax согласно методу наименьших квадратов (МНК),
− нахождение случайных погрешностей и погрешностей СИ этих коэффициентов,
− нахождение по найденным значениям коэффициентов a и b физических констант, содержащихся в этих коэффициентах. Последняя задача решается стандартным приемом метода переноса погрешностей при косвенных измерениях.
Метод обработки результатов измерений по методу наименьших квадратов (МНК) для уравнения y = ax + b
Все данные результатов замеров свести в таблицу и произвести обработку этих данных по МНК для уравнения y = ax + b.
Вычислить средние значения x и y
, ![]()
Определить средние значения … …
, ![]()
Рассчитать дисперсии и СКО
,
,
,![]()
Определить случайные погрешности a и b. Для расчета необходимо брать коэффициент Стьюдента tp,n – 1 , в отличие от прямых измерений, где использовался tp,n :
, ![]()
Вычислить погрешность СИ коэффициента b (погрешность СИ коэффициента a равна нулю)
![]()
Определить полные погрешности a и b
и ![]()
Результаты измерений представляются в форме
, P
Метод обработки результатов измерений по методу наименьших квадратов (МНК) для уравнения y = ax.
Все данные результатов замеров свести в таблицу и провести обработку этих данных по МНК для уравнения y = ax
Вычислить среднее значение a
![]()
Вычислить дисперсию и СКО
, ![]()
Вычислить случайную погрешность коэффициента a
![]()
Вычислить погрешность СИ коэффициента a
![]()
Вычислить полную погрешность коэффициента a
![]()
Результат измерения представляется по форме
, Р
Список использованной литературы
1. ГОСТ Р 8. 563 – 96 Государственная система обеспечения единства измерений. Методика выполнения измерений.
2. МИ 1317 – 2001 Государственная система обеспечения единств измерений. При
Результаты и характеристика погрешностей измерений.
3. РМГ 43 – 2001 Государственная система обеспечения единства измерений. Применение «Руководства по выражению неопределенности измерений».
4. Р 50. 2. 038 – 2004 Государственная система обеспечения единства измерений. Измерения прямые однократные. Оценивание погрешности и неопределенности результата измерения.
5 МИ 1552 – 86 Методика выполнения прямых однократных измерений.
6. ГОСТ 8. 207 – 76 Государственная система обеспечения единства измерений.
Прямые измерения с многократными наблюдениями, методы обработки результатов наблюдений.
7. ГОСТ ИСО 5479 – 2002 Государственная система обеспечения единства измерений. Проверка отклонения распределения вероятностей от нормального распределения.
8. МИ 199 – 70 Государственная система обеспечения единства измерений. Методика установления вида математической модели распределения погрешностей.
9. МИ 2083 – 90 СИ Измерения косвенные. Определение результатов измерений и оценивание их погрешностей.
10. ГОСТ Р ИСО 5725 – 4 – 2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений.
11. А.Г.Сергеев, В.Г.Крохин. Метрология: Учеб. пособие для студентов вузов. М.: Логос, 2001. 408 с.
12. И.Ф.Шишкин. Теоретическая метрология. М.: Издательство стандартов, 1991.472 с.
13. И.Ф.Шишкин, В.Н.Яншин. Прикладная метрология. М.: РИЦ "Татьянин день", 1993. 150 с.
14. Артемьев Б.Г., Лукашов Ю.Е. Справочное пособие для специалистов метрологических служб. – М.: ИПК Издательство стандартов, 2004.
15. И.Ф.Шишкин. Основы метрологии, стандартизации и контроля качества. М.: Стандарты, 1988.
... привело к созданию японской научной школы в области качества, среди представителей которых следует, прежде всего, отметить К.Исикаву и Г. Тагути, внесших большой вклад в развитие статистических методов в управлении качеством. Так Каору Исикава впервые в мировой практике предложил оригинальный графический метод анализа причинно-следственных связей, получивший название "диаграммы Исикава". Сегодня ...
... , основанной на поглощении атомами рентгеновского излучения. Ультрафиолетовая спектрофотометрия — наиболее простой и широко применяемый в фармации абсорбционный метод анализа. Его используют на всех этапах фармацевтического анализа лекарственных препаратов (испытания подлинности, чистоты, количественное определение). Разработано большое число способов качественного и количественного анализа ...
... , основанный на управлении качеством, уже имеют преимущества перед конкурентами в борьбе за потребителя и более других чувствуют уверенность в завтрашнем дне. Глава 2. Анализ системы управления качеством на предприятии ООО «ЧелябТрансАвто-3» 2.1. Общая характеристика предприятия Общество с ограниченной ответственностью «ЧелябТрансАвто-3» создано 22 октября 2002 г. (прил. 1) в ...
... или входной) может быть применен для контроля лишь такой продукции, в которой из 50 изделий хотя бы одно дефектно. Другими словами, этот метод управления качеством предназначен лишь для продукции сравнительно низкого качества (входной уровень дефектности не менее 1-2%) или при обслуживании потребителя, согласного на довольно высокий браковочный уровень дефектности (не менее 2,3%). Следовательно, ...
0 комментариев