5. Фазовые превращения и диаграмма состояния воды
Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления, они называются диаграммами состояния в координатах Р---Т
На рисунке 5 приведена в схематической форме диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.
В жидком состоянии – вода
Твёрдом – лёд
Газообразном – пар
Рис.5.1
Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.
лед = пар (кривая ОА)
лед = жидкость (кривая ОВ)
жидкость = пар (кривая ОС)
О – точка замерзания воды
Для воды критическая температура равна 374 градусов по цельсию. При нормальном давлении жидкая и парообразная фазы воды находятся между собой в равновесии при 100 градусов по цельсию, т.к. при этом давление пара над жидкостью сравнивается с внешним давлением и вода закипает. Пересечение трех кривых происходит в точке О – тройной точке, в которой все три фазы находятся между собой в равновесии.
Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА, отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится, и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представ-ляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом -- сосуществуют. Кривая ОА называется кривой равновесия жидкость--пар или кривой кипения. В таблице 5 приведены значения давления насыщенного водяного пара при нескольких температурах.
Таблица 5 Температура | Давление насыщенного пара | Температура | Давление насыщенного пара | ||
кПа | мм рт. ст. | кПа | мм рт. ст. | ||
0 | 0,61 | 4,6 | 50 | 12,3 | 92,5 |
10 | 1,23 | 9,2 | 60 | 19,9 | 149 |
20 | 2,34 | 17,5 | 70 | 31,2 | 234 |
30 | 4,24 | 31,8 | 80 | 47.4 | 355 |
40 | 7,37 | 55,3 | 100 | 101,3 | 760 |
Молекулярная физика воды в трех ее агрегатных состояниях
Рис.5.2 Диаграмма агрегатных состояний воды в области тройной точки А. I — лед. II — вода. III — водяной пар.
Вода встречается в природных условиях в трех состояниях: твердом — в виде льда и снега, жидком — в виде собственно воды, газообразном — в виде водяного пара. Эти состояния воды называют агрегатными состояниями, или же соответственно твердой, жидкой и парообразной фазами. Переход воды из одной фазы в другую обусловлен изменением ее температуры и давления. На рис. приведена диаграмма агрегатных состояний воды в зависимости от температуры t и давления P. Из рис.5.2 видно, что в области I вода находится только в твердом виде, в области II — только в жидком, в области III — только в виде водяного пара. Вдоль кривой AC она находится в состоянии равновесия между твердой и жидкой фазами (плавление льда и кристаллизация воды); вдоль кривой AB — в состоянии равновесия между жидкой и газообразной фазами (испарение воды и конденсация пара); вдоль кривой AD — в равновесии между твердой и газообразной фазами (сублимация водяного пара и возгонка льда).
Равновесие фаз по рис.5.2 вдоль кривых AB, АС и AD надо понимать как динамическое равновесие, т. е. вдоль этих кривых число вновь образующихся молекул одной фазы строго равно числу вновь образующихся молекул другой фазы.
Если, например, постепенно охлаждать воду при любом давлении, то в пределе окажемся на кривой AC, где будет наблюдаться вода при соответствующих температуре и давлении. Если постепенно нагревать лед при различном давлении, то окажемся на той же кривой равновесия АС, но со стороны льда. Аналогично будем иметь воду и водяной пар, в зависимости от того, с какой стороны будем подходить к кривой AB.
Все три кривые агрегатного состояния — АС (кривая зависимости температуры плавления льда от давления), АВ (кривая зависимости температуры кипения воды от давления), AD (кривая зависимости давления пара твердой фазы от температуры) — пересекаются в одной точке A, носящей название тройной точки. По современным исследованиям, значения давления насыщающих паров и температуры в этой точке соответственно равны: P = 610,6 Па (или 6,1 гПа = 4,58 мм рт. ст.), t = 0,01°C (или T = 273,16 К). Кроме тройной точки, кривая АВ проходит еще через две характерные точки — точку, соответствующую кипению воды при нормальном давлении воздуха с координатами P = 1,013·105 Па и t = 100°C, и точку с координатами P = 2,211·107 Па и tкр = 374,2°C, соответствующими критической температуре — температуре, только ниже которой водяной пар можно перевести в жидкое состояние путем сжатия.
Кривые АС, АВ, AD относящиеся к процессам перехода вещества из одной фазы в другую, описываются уравнением Клапейрона—Клаузиуса:
(1.1)
где T — абсолютная температура, отвечающая для каждой кривой соответственно температуре испарения, плавления, сублимации и т. д.; L — удельная теплота соответственно испарения, плавления, сублимации; V2 – V1 — разность удельных объемов соответственно при переходе от воды ко льду, от водяного пара к воде, от водяного пара ко льду. Подробное решение этого уравнения относительно давления насыщенного водяного пара e0 над поверхностью воды — кривая AB и льда — кривая AD, можно найти в курсе общей метеорологии.
Непосредственный опыт показывает, что природные воды суши при нормальном атмосферном давлении переохлаждаются (кривая AF) до некоторых отрицательных значений температуры не кристаллизуясь. Таким образом, вода обладает свойством переохлаждаться, т.е. принимать температуру ниже точки плавления льда. Переохлажденное состояние воды является состоянием метастабильным (неустойчивым), в котором начавшийся в какой-либо точке переход жидкой фазы в твердую продолжается непрерывно, пока не будет ликвидировано переохлаждение или пока не превратится в твердое тело вся жидкость. Способность воды принимать температуру ниже точки плавления льда была обнаружена впервые Фаренгейтом еще в 1724 г.
Таким образом, ледовые кристаллы могут возникать только в переохлажденной воде. Переход переохлажденной воды в твердое состояние – лед, происходит только при наличии в ней центров (ядер) кристаллизации, в качестве которых могут выступать взвешенные частицы наносов, находящиеся в воде, кристаллики льда или снега, поступающие в воду из атмосферы, кристаллики льда, образующиеся в переохлажденной воде в результате ее турбулентного поступательного движения, частицы других веществ, присутствующих в водной толще.
Рис.5.3 Фазовая диаграмма воды.
Ih, II — IX — формы льда; 1 — 8 — тройные точки.
Переохлаждение воды – термодинамическое состояние, при котором температура воды оказывается ниже температуры ее кристаллизации. Возникает это состояние в результате понижения температуры воды или же повышения температуры ее кристаллизации. Температура воды может быть понижена отводом тепла, что наиболее часто встречается в природе, или смешением ее с соленой, например морской, водой. Температура кристаллизации может быть повышена путем понижения давления.
Таким образом, диаграмму агрегатных состояний воды — сплошная линия AD на рис.5.3— следует рассматривать как относящуюся к очень малым тепловым нагрузкам, когда влияние времени на преобразование фазы мало. При больших тепловых нагрузках процесс фазовых преобразований будет происходить согласно штриховой кривой AF.
Температура плавления льда (кривая AC) очень слабо зависит от давления. Практически кривая AC параллельна горизонтальной оси: при изменении давления от 610,6 до 1,013·105 Па температура плавления уменьшается всего лишь от 0,01 до 0°С. Однако эта температура понижается с увеличением давления только до определенного значения, затем она повышается и при очень высоком давлении достигает значения порядка 450°С (рис.5.3) Как следует из рис., при высоком давлении лед может находиться и при положительной температуре. Насчитывают до десяти различных форм льда. Форма льда Ih, для которой характерно понижение температуры плавления с увеличением давления, соответствует обычному льду, образующемуся вследствие замерзания воды при нормальных условиях. Структура и физические свойства всех форм льда существенно отличаются от льда Ih.
Твердое тело (лед), как и жидкость, испаряется в широком диапазоне значений температуры и непосредственно переходит в газообразное состояние (возгонка), минуя жидкую фазу, — кривая AD. Обратный процесс, т. е. переход газообразной формы непосредственно в твердую (сублимация), осуществляется, также минуя жидкую фазу. Возгонка и сублимация льда и снега играют большую роль в природе.
Современная модель воды
Особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.
Одна из первых моделей воды – модель Фрэка и Уэна [Frank & Wen, 1957]. В соответствии с ней водородные связи в жидкой воде непрерывно образуются и рвутся, причем эти процессы протекают кооперативно в пределах короткоживущих групп молекул воды, названных “мерцающими кластерами”. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость. Считается, что благодаря таким свойствам вода служит одним из самых универсальных растворителей.
Однако модель “мерцающих кластеров” не может объяснить множество уже давно известных фактов, и тех, что стали стремительно нарастать в последнее время.
Но во второй половине XX века возникли две группы „смешанных“ моделей: кластерные и клатратные. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку (обычно в этом контексте называемую каркасом) водородных связей, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса. Нетрудно было подобрать такие свойства и концентрации двух микрофаз кластерных моделей или свойства каркаса и степень заполнения его пустот клатратных моделей, чтобы объяснить все свойства воды, в том числе и знаменитые аномалии.
Среди кластерных моделей наиболее яркой оказалась модель Г. Немети и Х. Шераги: предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий.
Модель клатратного типа предложил О.Я. Самойлов в 1946 году: в воде сохраняется подобная гексагональному льду сетка водородных связей, полости которой частично заполнены мономерными молекулами. Л. Полинг в 1959 году создал другой вариант, предположив, что основой структуры может служить сетка связей, присущая некоторым кристаллогидратам.
В течение второй половины 60-х годов и начала 70-х наблюдается сближение всех этих взглядов. Появлялись варианты кластерных моделей, в которых в обеих микрофазах молекулы соединены водородными связями. Сторонники клатратных моделей стали допускать образование водородных связей между пустотными и каркасными молекулами.
В 1990 г. чл.-корр. АН СССР Г.А. Домрачев (Ин-т металлоорганической химии РАН) и физик Д.А. Селивановский (Ин-т прикладной физики РАН) сформулировали гипотезу о существовании механохимических реакций радикальной диссоциации воды [Домрачев, 1995]. Они исходили из того, что жидкая вода представляет собой динамически нестабильную полимерную систему и что по аналогии с механохимическими реакциями в полимерах при механических воздействиях на воду поглощенная водой энергия, необходимая для разрыва Н-ОН, локализуется в микромасштабной области структуры жидкой воды. Реакцию разрыва Н-ОН связи можно записать так: (Н2О)n(Н2О...H-|-OH) (Н2О)m + E(Н2О)n+1(H ) + ( OH) (Н2О)m, где “ E” обозначает не спаренный электрон.
Поскольку диссоциация молекул воды и реакции с участием радикалов H и OH происходит в ассоциированном состоянии жидкой воды, радикалы могут иметь громадные (десятки секунд и более) продолжительности жизни до гибели в результате реакций рекомбинации [Blough et al., 1990].
Таким образом, существуют достаточно убедительные свидетельства в пользу того, что в жидкой воде присутствуют весьма устойчивые полимерные структуры. В 1993 году американский химик Кен Джордан предложил свои варианты устойчивых “квантов воды”, которые состоят из 6 её молекул [Tsai & Jordan, 1993]. Эти кластеры могут объединяться друг с другом и со “свободными” молекулами воды за счет экспонированных на их поверхности водородных связей. Интересной особенностью этой модели является то, что из нее автоматически следует, что свободно растущие кристаллы воды, хорошо известные нам снежинки должны обладать 6лучевой симметрией.
В 2002 году группе д-ра Хэд-Гордона методом рентгеноструктурного анализа с помощью сверхмощного рентгеновского источника Advanced Light Source (ALS) удалось показать, что молекулы воды способны за счет водородных связей образовывать структуры - "истинные кирпичики" воды, представляющие собой топологические цепочки и кольца из множества молекул.
Другая исследовательская группа Нильссона из синхротронной лаборатории всё того же Стенфордского университета, интерпретируя полученные экспериментальные данные как наличие структурных цепочек и колец, считает их довольно долгоживущими элементами структуры.
Несмотря на то, что разные модели предлагают отличающиеся по своей геометрии кластеры, все они постулируют, что молекулы воды способны объединяться с образованием полимеров. Но классический полимер – это молекула, все атомы которой объединены ковалентными связями, а не водородными, которые до недавнего времени считались чисто электростатическими. Однако в 1999 г. было экспериментально показано, что водородная связь между молекулами воды во льду имеет частично (на 10%) ковалентный характер [Isaacs E. D., et al.,1999]. Даже частично ковалентный характер водородной связи “разрешает”, по меньшей мере, 10% молекул воды объединяться в достаточно долгоживущие полимеры (неважно, какой конкретной структуры). А если в воде есть полимеры воды, то даже слабые воздействия на абсолютно чистую воду, а тем более ее растворы, могут иметь важные последствия.
В химии полимеров хорошо известен тот факт, что под действием механических напряжений, в частности – звуковой обработки, растяжения, продавливания полимера через тонкие отверстия, молекулы полимеров могут “рваться”. В зависимости от строения полимера, условий, в которых он находится, эти разрывы сопровождаются либо образованием новых беспорядочных связей между “обрывками” исходных молекул, либо уменьшением их молекулярной массы. Такие процессы служат, в частности, причиной старения полимеров. Редко уточняют, что фрагментация полимеров при подобных воздействиях – явление нетривиальное. Так, например, интактные молекулы ДНК, составленных из сотен тысяч и миллионов мономеров-нуклеотидов, легко распадаются на более мелкие фрагменты от простого перемешивания препарата палочкой. При этом, чем меньше фрагменты, тем более высокой плотности требуется энергия для дальнейшего дробления. Во всех случаях – и в длинных и в коротких полимерах разрываются химически идентичные ковалентные связи. Следовательно, если для разрыва ковалентной связи между двумя атомами в малой молекуле необходимо приложить энергию, эквивалентную энергии кванта УФ- или по меньшей мере видимого света, то такая же связь в полимере может разорваться при воздействии на него механических колебаний. В первом случае частота колебаний соответствует величинам порядка 1015 Гц, во втором – герцам – килогерцам. Значит, молекула полимера может выступать в роли своеобразного трансформатора энергии низкой плотности в энергию высокой плотности. Образно говоря, полимеры превращают тепло в свет. А тогда, если жидкая вода может хоть в какой-то степени рассматриваться как квази-полимер, то и в ней могут осуществляться подобные процессы.
Способность молекул воды образовывать определенные структуры, основана на наличии так называемых водородных связей. Эти связи не химической природы. Они легко разрушаются и быстро восстанавливаются, что делает структуру воды исключительно изменчивой. Именно благодаря этим связям в отдельных микрообъемах воды непрерывно возникают своеобразные ассоциаты воды, её структурные элементы. Связь в таких ассоциатах называется водородной. Она является очень слабой, легко разрушаемой, в отличие от ковалентных связей, например, в структуре минералов или любых химических соединений.
Интересно, что свободные, не связанные в ассоциаты молекулы воды присутствуют в воде лишь в очень небольшом количестве. В основном же вода – это совокупность беспорядочных ассоциатов и «водяных кристаллов», где количество связанных в водородные связи молекул может достигать сотен и даже тысяч единиц.
«Водяные кристаллы» могут иметь самую разную форму, как пространственную, так и двухмерную (в виде кольцевых структур). В основе же всего лежит тетраэдр (простейшая пирамида в четыре угла). Именно такую форму имеют распределенные положительные и отрицательные заряды в молекуле воды. Группируясь, тетраэдры молекул H2O образуют разнообразные пространственные и плоскостные структуры. И из всего многообразия структур в природе базовой, судя по всему (пока лишь не точно доказанное предположение) является всего одна – гексагональная (шестигранная), когда шесть молекул воды (тетраэдров) объединяются в кольцо.
Такой тип структуры характерен для льда, снега, талой воды, клеточной воды всех живых существ.
Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28', направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру (при этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный).
Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды. Схематически этот процесс показан ниже.
Рис.6.2 Структура жидкой воды. В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд.
Изучить строение этих образующихся полимеров воды оказалось довольно сложно, поскольку вода – смесь различных полимеров, которые находятся в равновесии между собой. Сталкиваясь друг с другом, полимеры переходят один в другой, разлагаются и вновь образуются.
Разделить эту смесь на отдельные компоненты тоже практически невозможно. Лишь в 1993 году группа исследователей из Калифорнийского университета (г. Беркли, США) под руководством доктора Р.Дж.Сайкалли расшифровала строение триммера воды, в 1996 г. – тетрамера и пентамера, а затем и гексамера воды. К этому времени уже было установлено, что жидкая вода состоит из полимерных ассоциатов (кластеров), содержащих от трех до шести молекул воды.
На рисунке 6.3показано строение три-, тетра-, пента-, и гексамера воды. Все они цикличны, т. е. образуют довольно устойчивые «кольца».
Более сложным оказалось строение гексамера. Самая простая структура – шесть молекул воды в вершинах шестиугольника, – как выяснилось, не столь прочна, как структура клетки. Более того, структуры призмы, раскрытой книги или лодки тоже оказались менее устойчивыми. В шестиугольнике может быть только шесть водородных связей, а экспериментальные данные говорят о наличии восьми. Это значит, что четыре молекулы воды связаны перекрёстными водородными связями.
Структуры кластеров воды были найдены и теоретически, сегодняшняя вычислительная техника позволяет это сделать. Более того, именно сопоставлением экспериментально найденных и рассчитанных параметров удалось доказать, что полимеры имеют то строение, которое описано выше.
В 1999 г. Станислав Зенин провёл совместно с Б. Полануэром (сейчас в США) исследование воды в ГНИИ генетики, которые дали интереснейшие результаты. Применив современные методы анализа, как-то рефрактометрического, протонного резонанса и жидкостной хроматографии исследователям удалось обнаружить полиассооциаты - "кванты" воды.
Объединяясь друг с другом, кластеры могут образовывать более сложные структуры.
Кластеры, содержащие в своём составе 20 молекулу оказались более стабильными.
Согласно гипотезе С.В. Зенина вода представляет собой иерархию правильных объемных структур "ассоциатов" (clathrates), в основе которых лежит кристаллоподобный "квант воды", состоящий из 57 ее молекул, которые взаимодействуют друг с другом за счет свободных водородных связей. При этом 57 молекул воды (квантов), образуют структуру, напоминающую тетраэдр. Тетраэдр в свою очередь состоит из 4 додекаэдров (правильных 12-гранников). 16 квантов образуют структурный элемент, состоящий из 912 молекул воды. Вода на 80% состоит из таких элементов, 15% - кванты-тетраэдры и 3% - классические молекулы Н2О. Таким образом, структура воды связана с так называемыми платоновыми телами (тетраэдр, додекаэдр), форма которых связана с золотой пропорцией. Ядро кислорода также имеет форму платонова тела (тетраэдра).
Элементарной ячейкой воды являются тетраэдры, содержащие связанные между собой водородными связями четыре (простой тетраэдр) или пять молекул Н2О (объемно-центрированный тетраэдр).
Рис.6.7 Тетраэдр
При этом у каждой из молекул воды в простых тетраэдрах сохраняется способность образовывать водородные связи. За счет их простые тетраэдры могут объединяться между собой вершинами, ребрами или гранями, образуя различные кластеры со сложной структурой, например, в форме додекаэдра.
Рис.6.8 Додекаэдр
Таким образом, в воде возникают стабильные кластеры, которые несут в себе очень большую энергию и информацию крайне высокой плотности. Порядковое число таких структур воды так же высоко, как и порядковое число кристаллов (структура с максимально высоким упорядочением, которую мы только знаем), потому их также называют «жидкими кристаллами» или «кристаллической водой». Такая структура энергетически выгодна и разрушается с освобождением свободных молекул воды лишь при высоких концентрациях спиртов и подобных им растворителей [Зенин, 1994]. "Кванты воды" могут взаимодействовать друг с другом за счет свободных водородных связей, торчащих наружу из вершин “кванта” своими гранями. При этом возможно образование уже двух типов структур второго порядка. Их взаимодействие друг с другом приводит к появлению структур высшего порядка. Последние состоят из 912 молекул воды, которые по модели Зенина практически не способны к взаимодействию за счет образования водородных связей. Этим и объясняется, например, высокая текучесть жидкости, состоящей из громадных полимеров. Таким образом, водная среда представляет собой как бы иерархически организованный жидкий кристалл.
Изменение положения одного структурного элемента в этом кристалле под действием любого внешнего фактора или изменение ориентации окружающих элементов под влиянием добавляемых веществ обеспечивает, согласно гипотезе Зенина, высокую чувствительность информационной системы воды. Если степень возмущения структурных элементов недостаточна для перестройки всей структуры воды в данном объеме, то после снятия возмущения система через 30-40 мин возвращается в исходное состояние. Если же перекодирование, т. е. переход к другому взаимному расположению структурных элементов воды оказывается энергетически выгодным, то в новом состоянии отражается кодирующее действие вызвавшего эту перестройку вещества [Зенин, 1994]. Такая модель позволяет Зенину объясненить "память воды" и ее информационные свойства [Зенин, 1997].
В дистиллированной воде кластеры практически электронейтральны. Однако Зенин обнаружил, что их электропроводность можно изменить. Если помешать магнитной мешалкой, связи между элементами клстеров будут разрушены и вода превратится в мертвое, неупорядоченное месиво.
Если поместить в воду предельно малое количество другого вещества (хоть одну молекулу) - кластеры начнут "перенимать" его электромагнитные свойства. Это свойство объясняет чрезвычайно лабильный, подвижный характер их взаимодействия. Его природа обусловлена дальними кулоновскими силами, определяющими новый вид зарядово-комплементарной связи. Именно за счет этого вида взаимодействий осуществляется построение структурных элементов воды в ячейки (клатраты) размером до 0,5-1 микрон. Их можно непосредственно наблюдать при помощи контрастно-фазового микроскопа.
Структурированное состояние воды оказалось чувствительным датчиком различных полей. С. Зенин считает, что мозг, сам состоящий на 90% из воды, может, тем не менее, изменять её структуру.
Опираясь на подобные представления о структуре воды, учёные выяснили интересные подробности. Недавно, как сообщил российские исследователи Высоцкий и Корнилова, развивая идеи Ю.И. Наберухина, провели расчет энергетических характеристик, необходимых для перехода свободных молекул воды из несвязанного состояния в полость клатрата и обратно.
С помощью этих расчетов они показали, что структурой воды - количеством свободных молекул воды в полостях клатратов и вне их, - можно управлять с помощью давления, температуры, магнитного поля и т. д. Причем вода может использоваться для медицинских целей, как самостоятельно, так и в качестве "упаковки" для молекул лекарственных веществ. Такой гипотетической "упаковкой", способной донести лекарства до внутренних органов больного, не растратив их по пути, служат клатраты, в полостях которых могут быть размещены лекарственные молекулы при определенных режимах их приготовления.
В природных условиях полости в клатратах воды могут занимать молекулы природных газов, образуя кристаллогидраты. Наиболее распространенным кристаллогидратом, встречающимся в вечной мерзлоте и на дне морей и океанов, является кристаллогидрат углеводородного газа метана. Он представляет собой массу, похожую на мокрый снег. Такие кристаллогидраты, в принципе, могут использоваться в качестве топлива альтернативного нефти и газу, но, вместе с тем, могут представлять большую опасность для жизни на Земле.
Модель кластерного строения воды имеет много спорных дискутируемых моментов, но отвергать её совершенно несправедливо. Например, Зенин предполагает, что основной структурный элемент воды — кластер из 57 молекул, образованный слиянием четырёх додекаэдров. Они имеют общие грани, а их центры образуют правильный тетраэдр. То, что молекулы воды могут располагаться по вершинам пентагонального додекаэдра, известно давно; такой додекаэдр — основа газовых гидратов. Поэтому ничего удивительного в предположении о существовании таких структур в воде нет, хотя уже говорилось, что никакая конкретная структура не может быть преобладающей и существовать долго. Поэтому странно, что этот элемент предполагается главным и что в него входит ровно 57 молекул. Из шариков, например, можно собирать такие же структуры, которые состоят из примыкающих друг к другу додекаэдров и содержат 200 молекул. Зенин же утверждает, что процесс трёхмерной полимеризации воды останавливается на 57 молекулах. Более крупных ассоциатов, по его мнению, быть не должно. Однако если бы это было так, из водяного пара не могли бы осаждаться кристаллы гексагонального льда, которые содержат огромное число молекул, связанных воедино водородными связями. Совершенно неясно, почему рост кластера Зенина остановился на 57 молекулах. Чтобы уйти от противоречий, Зенин упаковывает кластеры в более сложные образования — ромбоэдры — из почти тысячи молекул, причём исходные кластеры друг с другом водородных связей не образуют. Возникает вопрос почему? Чем молекулы на их поверхности отличаются от тех, что внутри? По мнению Зенина, узор гидроксильных групп на поверхности ромбоэдров и обеспечивает информационые свойства воды. Следовательно, молекулы воды в этих крупных комплексах жёстко фиксированы, и сами комплексы представляют собой твёрдые тела. Такая вода не будет течь, а температура её плавления, которая связана с молекулярной массой, должна быть весьма высокой. Поскольку в основе модели лежат тетраэдрические постройки, её можно в той или иной степени согласовать с данными по дифракции рентгеновских лучей и нейтронов. И хотя модель Зенина может объяснить уменьшение плотности при плавлении — упаковка додекаэдров плотнее, чем лёд, труднее согласуется модель с динамическими свойствами воды — текучестью, большим значением коэффициента самодиффузии, малыми временами корреляции и диэлектрической релаксации, которые измеряются пикосекундами..
Рассматривая все эти модели, нужно чётко представлять, что они – пока не более чем модели, лучше всего объясняющие те или иные аномальные свойства воды.
... , что только этих страниц статьи уже достаточно для того, чтобы стала ясна потенциальная научная, научно-практическая и научно-организационная польза рассмотренной нами концептуальной основы современных знаний о природе Мирового океана. Каковы же причины, до сих пор препятствующие превращению этой пользы из потенциальной в реальную? Переходя к ответу на этот вопрос, необходимо учесть следующее: ...
... качества. Патриот своей Родины. Честный и высокогуманный гражданин. Следил за работами своих учеников, поддерживал их всесторонне, радовался их успехам. Много работая теоретически, не был кабинетным ученым: организатор и участник многих экспедиций. Участник прогрессивных социальных преобразований в жизни нашего общества. Свидетель величайших мировых событий его времени: русско-турецкая война 1877 ...
... в предсказании краткосрочных процессов (на 10-15 лет), что связано с отсутствием необходимых материалов о состоянии компонентов экосистем и процессах их эволюционных и циклических изменений. 1.4 Экономические последствия строительства и эксплуатации водохранилищ 1.4.1 Воздействие ГТС на земельные ресурсы Изменения, вносимые созданием и эксплуатацией ГТС в режим водотока, как и изменения, ...
... использования водоемов как национального богатства, гидробиологам необходимо контактировать в своей работе с представителями самых разнообразных учреждений (инженерных, экономических, санитарных и др.). Основные принципы и понятия гидробиологии Гидробиология как наука экологическая прежде всего исходит из представления о том, что организмы и другие живые системы не могут существовать без ...
0 комментариев