7. Агрегатные виды льда

Лёд - минерал с химической формулой H2O, представляет собой воду в кристаллическом состоянии.

Химический состав льда: Н - 11,2%, О - 88,8%. Иногда лед содержит газообразные и твердые механические примеси. В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С.

Свойства льда: Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309).

Лёд – кристаллическая модификация воды. По последним данным лёд имеет 14 структурных модификаций. Среди них есть и кристаллические (их большинство) и аморфные модификации, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Эти условия близки к космическим и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

Самое необычное свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс.

Кристаллическая структура льда похожа на структуру алмаза: каждая молекула Н2O окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность(0,917).

В природе лёд представлен, главным образом, одной кристаллической разновидностью, кристаллизующейся в гексагональной решётке, с плотностью 931 кг/м3. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея и т. д. Поскольку лёд легче жидкой воды, то образуется он на поверхности водоёмов, что препятствует дальнейшему замерзанию воды.

Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды, а примеси вытесняются в жидкость. Однако, лёд может содержать механические примеси — твёрдые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда.

Растущий кристалл льда всегда стремится создать идеальную кристаллическую решетку и вытесняет посторонние вещества. Но в планетарном масштабе именно замечательный феномен замерзания и таяния воды играет роль гигантского очистительного процесса - вода на Земле постоянно очищает сама себя.

Общие запасы льда на Земле около 30 млн. км3. Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км. Также имеются данные о наличии льда на планетах Солнечной системы и в кометах.

Модификации льда

Впервые полиморфизм льда был обнаружен Г. Тамманом в 1900 г. и подробно изучен П. Бриджеменом в 1912 г.

Наиболее изученным является лёд I-й природной модификации. Лёд встречается в природе в виде льда (материкового, плавающего, подземного и т.д.), а также в виде снега, инея и т.д. Он распространён во всех областях обитания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Ледники, ледяные покровы, вечная мерзлота, сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: скопившийся на полюсах Земли лёд способен вызывать многолетние колебания уровня Мирового океана. Лед имеет столь большое значение для нашей планеты и обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

В связи с широким распространением воды и льда на Земле отличие свойств льда от свойств других веществ играет важную роль в природных процессах. Вследствие меньшей, чем у воды, плотности лёд образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от донного замерзания. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, превратившись в глыбы льда, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого. Зависимость между скоростью течения и напряжением у поликристаллического льда гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения.

Кроме того, скорость течения льда прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры лёд приближается по своим свойствам к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть льда в 106 раз выше, чем у горных пород. Благодаря своей текучести лёд не накопляется в одном месте, а в виде ледников постоянно перемещается.

Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования сетчатой структуры льда.

Вследствие очень высокой отражательной способности льда (0,45) и снега (до 0,95) покрытая ими площадь — в среднем за год около 72 млн. км2 в высоких и средних широтах обоих полушарий — получает солнечного тепла на 65% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, тем не менее температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние льда, имеющего очень высокую теплоту таяния.

К другим необычным свойствам льда относят и генерацию электромагнитного излучения его растущими кристаллами. Известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти; они вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. При этом примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

Лёд II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает —170°С. При нагревании приблизительно до —150°С лёд превращаются в кубический лёд Ic.

При конденсации паров воды на более холодной подложке образуется аморфный лёд. Эта форма льда может самопроизвольно переходить в гексагональный лёд, причём тем быстрее, чем выше температура.

Лёд IV-й модификации является метастабильной фазой льда. Он образуется гораздо легче и особенно стабилен, если давлению подвергается тяжёлая вода.

Кривая плавления льда V и VII исследована до давления 20 Гн/м2 (200 тыс. кгс/см2). При этом давлении лёд VII плавится при температуре 400°С.

Лёд VIII является низкотемпературной упорядоченной формой льда VII.

Лёд IX — метастабильная фаза, возникающая при переохлаждении льда III и по существу представляющая собой его низкотемпературную форму.

Две самых последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора — соляной кислоты, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но они могут встречаться на замерзших спутниках других планет.

Разгадка структуры льда заключается в строении его молекулы. Кристаллы всех модификаций льда построены из молекул воды H2O, соединённых водородными связями в трёхмерный каркас (рис.7). Молекулу воды можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В её центре находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, поэтому их называют неподеленными.

Каждая молекула участвует в 4 таких связях, направленных к вершинам тетраэдра. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28', направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру. При этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный. В структурах льда II, III, V и VI тетраэдры заметно искажены. В структурах льда VI, VII и VIII можно выделить 2 взаимоперекрещивающиеся системы водородных связей. Этот невидимый каркас из водородных связей располагает молекулы в виде сетчатой сетки, по структуре напоминающей соты с полыми каналами. Если лед нагреть, сетчатая структура разрушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — поэтому вода тяжелее льда.

Лед, который образуется при атмосферном давлении и плавится при 0 °С, — самое привычное, но всё же до конца не понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а атомы водорода занимают самые разные положения вдоль связей. Поэтому возможны 6 эквивалентных ориентаций молекул воды относительно их соседей. Часть из них исключается, поскольку нахождение одновременно 2 протонов на одной водородной связи маловероятно, но остаётся достаточная неопределённость в ориентации молекул воды. Такое поведение атомов нетипично, поскольку в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество. Такая необычная структура может реализоваться в большинстве модификаций льда — I, III, V, VI и VII (и по-видимому в Ic), а в структуре льда II, VIII и IX молекулы воды ориентационно упорядочены. По выражению Дж. Бернала лёд кристалличен в отношении атомов кислорода и стеклообразен в отношении атомов водорода.

Однако самое удивительное в структуре льда заключается в том, что молекулы воды при низких отрицательных температурах и высоких давлениях внутри нанотрубок могут кристаллизоваться в форме двойной спирали, похожей на ДНК. Это было доказано компьютерными экспериментами американских учёных под руководством Сяо Чэн Цзэна в Университете штата Небраска (США).

Вода в моделируемом эксперименте "помещалась" в нанотрубки под высоким давлением, варьирующимися в разных опытах от 10 до 40000 атмосфер. После этого задавали температуру, которая во всех запусках имела значение -23°C. Запас по сравнению с температурой замерзания воды делался в связи с тем, что с повышением давления температура плавления водяного льда понижается. Диаметр нанотрубок составлял от 1,35 до 1,90 нм.

Молекулы воды связываются между собой посредством водородных связей, расстояние между атомами кислорода и водорода равно 96 пм, а между двумя водородами - 150 пм. В твёрдом состоянии атом кислорода участвует в образовании двух водородных связей с соседними молекулами воды. При этом отдельные молекулы воды соприкасаются друг с другом разноимёнными полюсами. Таким образом, образуются слои, в которых каждая молекула связана с тремя молекулами своего слоя и одной из соседнего. В результате, кристаллическая структура льда состоит из шестигранных "трубок" соединенных между собой, как пчелиные соты.

Учёные ожидали увидеть, что вода во всех случаях образует тонкую трубчатую структуру. Однако, модель показала, что при диаметре трубки в 1,35 нм и давлении в 40000 атмосфер водородные связи искривились, приведя к образованию спирали с двойной стенкой. Внутренняя стенка этой структуры является скрученной в четверо спиралью, а внешняя состоит из четырёх двойных спиралей, похожих на структуру молекулы ДНК.

Многообразие льда:

I. Атмосферный лед: снег, иней, град.

Атмосферный лед - ледяные частицы, взвешенные в атмосфере или выпадающие на земную поверхность (твердые осадки), а также ледяные кристаллы или аморфный налет, образующийся на земной поверхности, на поверхности наземных предметов и на летательных аппаратах в воздухе.

Снег - твердые осадки, выпадающие в виде снежинок. Снег выпадает из многих видов облаков, в особенности из слоисто-дождевых (снегопад). Снег - типичный зимний вид осадков, образующий снежный покров.

Иней - тонкий неравномерный слой ледяных кристаллов, образующийся на почве, траве и наземных предметах из водяного пара атмосферы при охлаждении земной поверхности до отрицательных температур, более низких, чем температура воздуха.

Град - атмосферные осадки в виде частичек льда круглой или неправильной формы (градин) размером 5-55 мм. Град выпадает в теплое время года из мощных кучево-дождевых облаков, сильно развитых вверх, обычно при ливнях и грозах.

II. Водный лед (ледяной покров)образующийся на поверхности воды и в массе воды на различной глубине: внутриводный, донный лед.

Ледяной покров - сплошной лед, образующийся в холодное время года на поверхности океанов, морей, рек, озер, искусственных водоемов, а также приносимый из соседних районов. В высокоширотных областях существует круглогодично.

Внутриводный лед- скопление первичных ледяных кристаллов, образующихся в толще воды и на дне водного объекта.

Донный лед - лед, откладывающийся на дне водоема или взвешенный в воде. Донный лед наблюдается на дне рек, морей и небольших озер, на погруженных в воду предметах и в мелких местах. Донный лед образуется при кристаллизации переохлажденной воды, имеет рыхлую пористую структуру.

III. Подземный лед.

Подземные льды - льды, находящиеся в верхних слоях земной коры. Подземные льды встречаются в областях распространения многолетнемерзлых пород. По времени образования различают современный и ископаемый подземный лед, по происхождению:

а). первичный лед, возникающий в процессе промерзания рыхлых отложений;

б). вторичный лед - продукт кристаллизации воды и водяных паров (а) в трещинах (жильный лед), (б) в порах и пустотах (пещерный лед), (в) погребенный лед, формирующийся на земной поверхности, а затем перекрытый осадочными породами.

IV. Наледный лед.

Наледный лед – образуется за счет послойного намораживания воды, поступающей на поверхность ледяного покрова. Наледный лед имеет слоистую структуру с толщиной слоев до нескольких сантиметров, характерен для водотоков в районах с суровым климатом и по оптическим свойствам занимает промежуточное положение между снеговым и водным льдом.

Также лед можно разделить на:

Водный (кристаллический) лед – образован замерзанием чистой воды (без примеси иных ранее образовавшихся видов льда) при понижении температуры поверхностного слоя до точки замерзания. Он преимущественно прозрачный, состоит из столбчатых кристаллов разной толщины, оси которых направлены перпендикулярно к замерзающей поверхности. С точки зрения структуры это кристаллический лед, с выраженной первичной структурой

Шуговый лед - возникает при замерзании воды, содержащей шуговые образования. Он образуется или непосредственно на поверхности воды в период движения шуги, или же путем примерзания последней к нижней поверхности водного или снегового льда при наличии зажора. Шуговый лед содержит обычно много пузырьков воздуха, а также включения взвешенных наносов и грунта, поэтому он менее прозрачен, чем водный и имеет неправильную структуру.

Снежный (снеговой) лед - образуется промерзанием талого снега на поверхности воды при густом снегопаде или же талого снега на льду, пересыщенного водой. Снежный лед имеет зернистую структуру, непрозрачен, содержит большое количество воздушных пузырей.

Игольчатый лед - лед, образующийся при спокойной воде на поверхности реки. Игольчатый лед имеет вид призматических кристаллов с осями, расположенными в горизонтальном направлении, что придает льду слоистое строение.

Серо-белый лед - молодой лед толщиной 15-30 см. Обычно при сжатиях серо-белый лед торосится.

Серый лед - молодой лед толщиной 10-15 см. Обычно при сжатиях серый лед наслаивается.

Сало - поверхностные первичные ледяные образования, состоящие из иглообразных и пластинчатых кристаллов в виде пятен или тонкого сплошного слоя серого цвета.

Забереги - полосы льда, окаймляющие берега рек, каналов, озер и водохранилищ при незамерзшей остальной части водного пространства. Различают первичные забереги, образующиеся у берегов; наносные забереги, возникающие в результате примерзания льда и шуги во время ледохода; остаточные забереги, остающиеся у берегов весной при таянии льда. На озерах и водохранилищах они могут нарастать также за счет льдин, пригнанных к берегу ветром. При сильных ветрах (на водоемах) или течениях (на водотоках) они взламываются и нагромождаются на берега в виде торосов.

В зарубежной литературе встречаются термины «черный лед» и «белый лед». Черный – это лед, образовавшийся при замерзании воды при небольшом количестве рассеивающих включений; такой лед имеет темный цвет. Белый лед образуется при смерзании шуги или снега с большим количеством включений воздуха, характеризуется мелкокристаллической структурой; вследствие рассеяния света такой лед имеет белый цвет.


Заключение

Вода - это и строительный материал, который используется для создания всего живого, и среда, в которой протекают все жизненные процессы, и растворитель, выносящий из организма вредные для него вещества, и уникальный транспорт, снабжающий биологические структуры всем необходимым для нормального протекания в них сложнейших физико-химических процессов. И это всеобъемлющее влияние воды на любую живую структуру может быть не только положительным, но и отрицательным. В зависимости от своего состояния вода может быть как созидателем цветущей жизни, так и ее разрушителем, могильщиком - всё зависит от ее химического и изотопного состава, структурных, биоэнергетических свойств. Не случайно академик И. В. Петрянов сказал: "Вода - это подлинное чудо природы!". Учёные абсолютно правы: нет на Земле вещества, более важного для нас, чем обыкновенная вода, и в тоже время не существует другого такого вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

«Что такое вода?» - вопрос далеко не простой. Все, о чем было рассказано о ней в данной работе не является исчерпывающим ответом на этот вопрос, а во многих случаях дать ясный ответ на него пока и совсем нельзя. Например, пока остается открытым вопрос о структуре воды, причинах многочисленных аномалий воды и, вероятно, еще о многих свойствах и разновидностях воды, о которых мы даже не подозреваем. Однозначно можно сказать лишь то, что вода - самое уникальное вещество на земле. Напомним слова нашего гениального соотечественника акад. В. И. Вернадского о том, о "надо ждать особый исключительный характер физико-химических свойств воды среди всех других соединений, который отражается и на ее положении в мироздании и на структуре мироздания".

Список литературы

1. Fletcher N. H., The chemical physics of ice, Camb., 1970;

2. o8ode.ru(публикация работ Мосина Олега)

3. www.ecoz.ru

4. www.okeani.ru

5. Вода, которую мы пьём, Ахматов М. Москва, 2006;

6. Вода питьевая. М.: ИПК Издательство стандартов.

7. Методические указания "Основы гидрофизики", Козлов Д. В. http://www.msuee.ru/html2/med_gidr/lit.html

8. Основы структурного ледоведения, Шумский П. А., М., 1955;

9. Физика льда, Паундер Э. Р., пер. с англ., М., 1967;

10. Чистая вода. Системы очистки и бытовые фильтры. СПб.: Изд. Арлит, 2000 Миклашевский Н.В., Королькова С.В.


Информация о работе «строение воды как физического тела - гидрофизика»
Раздел: Физика
Количество знаков с пробелами: 95010
Количество таблиц: 3
Количество изображений: 5

Похожие работы

Скачать
41306
0
0

... , что только этих страниц статьи уже достаточно для того, чтобы стала ясна потенциальная научная, научно-практическая и научно-организационная польза рассмотренной нами концептуальной основы современных знаний о природе Мирового океана. Каковы же причины, до сих пор препятствующие превращению этой пользы из потенциальной в реальную? Переходя к ответу на этот вопрос, необходимо учесть следующее: ...

Скачать
116217
0
0

... качества. Патриот своей Родины. Честный и высокогуманный гражданин. Следил за работами своих учеников, поддерживал их всесторонне, радовался их успехам. Много работая теоретически, не был кабинетным ученым: организатор и участник многих экспедиций. Участник прогрессивных социальных преобразований в жизни нашего общества. Свидетель величайших мировых событий его времени: русско-турецкая война 1877 ...

Скачать
224699
13
7

... в предсказании краткосрочных процессов (на 10-15 лет), что связано с отсутствием необходимых материалов о состоянии компонентов экосистем и процессах их эволюционных и циклических изменений.   1.4 Экономические последствия строительства и эксплуатации водохранилищ   1.4.1 Воздействие ГТС на земельные ресурсы Изменения, вносимые созданием и эксплуатацией ГТС в режим водотока, как и изменения, ...

Скачать
62738
0
0

... использования водоемов как национального богатства, гидробиологам необходимо контактировать в своей работе с представителями самых разнообразных учреждений (инженерных, экономических, санитарных и др.). Основные принципы и понятия гидробиологии Гидробиология как наука экологическая прежде всего исходит из представления о том, что организмы и другие живые системы не могут существовать без ...

0 комментариев


Наверх