9. Коэффициент смешения насосно-смесительной установки (элеватор)

U = 1,15·; [14.70]

U* = 1+U/φб,

где φб =Gб.мт / G`о = 1,39 – расчетный коэффициент смешения.

10.Безразмерная характеристика отопительной системы при  и Q

εо =  [14.71]


где = 0,5· = 40,85 0С – средняя температура нагревательных приборов в точке излома температурного графика;

φм = G/ G`о = 1,54 – отношение суммарного расхода воды к расчетному расходу воды на отопление при максимальном часовом расходе тепла на ГВС.

11. Суммарный перепад температур сетевой воды в I и II ступенях при Q:

δ = 3600 Q/с·G, 0С [14.72]

12. Температура сетевой воды после отопительной системы при максимальном водозаборе:

 = , 0С [14.73]

13. Тепловая производительность I и II ступени при Q:

Q= Q·(- tх / tг - tх)·ε1 ,кВт [14.74]

Q= Q- Q, кВт [14.75]

14. Температура сетевой воды перед элеватором:

= - 3600·Q/с·G, 0С [14.76]

15. Температура сетевой воды после I ступени подогревателя:


= - 3600·Q/с·G, 0С [14.77]

16. Температура водопроводной воды после I ступени подогревателя при максимальном водоразборе:

= tх + 3600·Q/с·G, 0С; [14.78]

17. Среднелогарифмическая разность температур теплоносителей в I ступени:

∆tсрI = , 0С; [14.79]

где ∆tб = ( - tх) = 12,29 0С;

∆tм = ( - ) = 0 0С.

18. Задав скорость воды в трубках и межтрубном пространстве ω = 1 м, определим предварительное значение площади трубок и межтрубного пространства:

fтр = G/3600·ω·ρ = 0,01207 м2 – ЦТП-1; [14.80]

fмт = G/3600·ω·ρ = 0,02204 м2- ЦТП-1; [14.81]

где ρ – 1000 кг/м3 – плотность воды.

Для ЦТП2: fтр = 0,01922 м2; fмт = 0,03494 м2.

Подбираем водяные подогреватели из (приложения 12).


Технические характеристики водяных подогревателей

Таблица № 14.1

Внутренний диаметр корпуса Dвн, мм

Поверхность нагрева, м2

Площадь проходного сечения, м2

Эквивалентный диаметр межтрубного пространства, мм

секций Fc, длиной

трубок межтр. прост-ва
4 м

fтр

fмт

ЦТП-1 273 20,3 0,01679 0,03077 0,0196
ЦТП-2 325 28,49 0,02325 0,04464 0,0208

19. Действительные скорости воды:

ωтр = G/3600·fтр·ρ = 1,0 м2 [14.82]

ωмт = G/3600·fмт·ρ = 1,0 м2. [14.83]

Для ЦТП-1,2

20. Коэффициенты теплоотдачи:

- от греющей воды к стенкам трубок:

αмт = (1630+21·tср- 0,041·t2ср) ·ω0,8мт/= 4414,12 Вт/(м2 ·0С), [14.84]

где tср = 0,5·(tх - ) = 18,6 0С – ЦТП-1.

- от трубок к нагреваемой среде:

αтр = (1630+21·τср- 0,041·τ2ср) ·ω0,8мт/= 4992,46 Вт/(м2 ·0С), [14.85]

где τср = 0,5·( - τ2мах) = 24,74 0С – ЦТП-1.

Для ЦТП-2: αмт = 4353,93 Вт/(м2 ·0С);

αтр = 4992,46 Вт/(м2 ·0С);

21. Коэффициент теплопередачи водоподогревателя в I ступени:


k = β /= 2078,24 Вт/(м2 ·0С) [14.86]

где β = 0,85 – коэффициент загрязнения поверхности нагрева (трубок);

 - толщина стенки трубки, м (= 0,001 м);

 - теплопроводность стенки, Вт/(м2 ·0С) ( = 110 Вт/(м2 ·0С).

22. Необходимая площадь нагрева подогревателя I ступени:

FI = Q/ k·∆tсрI·µ = 67,29 м2– ЦТП-1; [14.87]

FI = 107,1 м2 – ЦТП-2

где µ - коэффициент, учитывающий накипь и загрязнение трубок, µ = 0,8.

23. Количество секций:

n = FI/ Fc = 2.36 ≈ 3 шт – ЦТП-1; [14.88]

n = 3.76 ≈ 4 шт – ЦТП-2.

24. Для подогревателя II ступени, составленной из секций того же типоразмера, число секций находится аналогичным образом:

∆tсрII = = 22,85 0С; [14.89]

где ∆tб = ( - ) = 29.87 0С;

∆tм = ( - г) = 17,3 0С.

τсрII= 0,5·( + ) = 69,68 0С [14.90]

tсрII = 0,5·( г+) = 46,1 0С [14.91]

ωтр и ωмт – остается такой же, как и для первой ступени.

ЦТП-1 αмт = (1630+21·tсрII- 0,041·tсрII2) ·ω0,8мт/= 5524.2 Вт/(м2 ·0С), [14.92]

ЦТП-2 αмт = (1630+21·tсрII- 0,041·tсрII2) ·ω0,8мт/= 5448,9 Вт/(м2 ·0С), [14.93]

αтр = (1630+21·τсрII- 0,041·τ2срII) ·ω0,8мт/= 6801.39 Вт/(м2 ·0С), [14.94]

k = β /= 2507.37 Вт/(м2 ·0С) [14.95]

ЦТП-1 FII = Q/ k · ∆tсрII·µ = 30.68 м2 [14.96]

 n = FII/ Fc = 1.51 ≈ 2 шт [14.97]

ЦТП-2 FII = Q/ k · ∆tсрII·µ = 48.83 м2 [14.98]

n = FII/ Fc = 1.71 ≈ 2 шт [14.99]


Последовательная двухступенчатая схема присоединения подогревателей ГВС

Схема № 14.2

 


Библиографический список

1.  Теплоснабжение района города «Методические указания к курсовому проекту по курсу Теплоснабжение». Томского государственного архтектурно-строительного университета, 2001 г.

2.  Расчёт и проектирование тепловых сетей. / А.Ю. Строй, В.Л. Скальский . –Киев.: Будивельник, 1981 г.


Информация о работе «Теплоснабжение районов г. Казани»
Раздел: Физика
Количество знаков с пробелами: 36978
Количество таблиц: 12
Количество изображений: 2

Похожие работы

Скачать
33905
6
273

... затраты на перекачку теплоносителя руб/год; стоимость тепловых потерь руб/год; стоимость обслуживания  руб/год. АННОТАЦИЯ Ахметзянов З.З., группа ПТ-1-95 Бакалаврская работа на тему: Теплоснабжение промышленного района города Астрахань. – Казань: КЭИ, 1999. В данной работе излагается последовательность и основные принципы расчета режимных графиков, гидравлического расчета паровой и водяной сети ...

Скачать
84745
13
1

... Таблица 6.1 - Исходные данные для расчета тепловой схемы котельной, работающей на закрытую систему теплоснабжения: Наименование Обо- зна- чение Обоснование Значение величины при характерных режимах работы котельной Максимально-зимнем летнем Место расположения котельной _ задано г. Владимир  Максимальные расходы теплоты ( с учетом потерь и расхода на мазутное хозяйство), МВт: ...

Скачать
11348
4
0

... графиков часовых расходов теплоты на отопление вентиляцию и горячее водоснабжение, а также годовых графиков теплопотребления по продолжительности тепловой нагрузки и по месяцам. Расчетные тепловые потоки района города ΣQ0 = 88,3 МВт, на вентиляцию ΣQV = 10,6 МВт, на горячее водоснабжение ΣQHM=16,98 МВт. Расчетная температура наружного воздуха для проектирования систем отопления t0 = ...

Скачать
158109
1
0

... устанавливается законами субъектов Российской Федерации". В следующих разделах работы нами будут исследованы особенности нормативно – правового регулирования «приемной семьи» путем анализа федерального и регионального законодательства на примере Чувашской Республики [8]. Так же, приемную семью можно определить как опеку (попечительство) над ребенком (детьми), которая, осуществляется по договору ...

0 комментариев


Наверх