2.4 Потери мощности в IGBT
Потери в IGBT в проводящем состоянии
(2.3)
А (2.4)
Вт
Вт
где Iср = Iс.макс/k1 – максимальная величина амплитуды тока на входе инвертора; D = (tp/T) – максимальная скважность, принимается равной 0,95; cos θ – коэффициент мощности, примерно равный cosφ; Uce(sat) – прямое падение напряжения на IGBT в насыщенном состоянии при Iср и Тj = 125 °С (типовое значение 2,1–2,2 В).
Потери IGBT при коммутации
(2.5)
Вт
где tc(on), tc(off) – продолжительность переходных процессов по цепи коллектора IGBT соответственно на открывание и закрывание транзистора, с (типовое значение tс(on) = 0,3 – 0,4 мкс, tс(off) = 0,6–0,7 мкс); Ucc – напряжение на коллекторе IGBT (коммутируемое напряжение, равное напряжению звена постоянного тока для системы АИН–ШИМ), В; fsw – частота коммутаций ключей (частота ШИМ), обычно от 5000 до 15000Гц.
Суммарные потери IGBT
(2.6)
Вт
Потери диода в проводящем состоянии
(2.7)
Вт
где Iеp = Iср – максимум амплитуды тока через обратный диод, А; Uec – прямое падение напряжения на диоде (в проводящем состоянии) при Iep, B.
Потери восстановления запирающих свойств диода
(2.8)
Вт
где Irr. – амплитуда обратного тока через диод (равные Icp), A; trr – продолжительность импульса обратного тока, с (типовое значение 0,2 мкс).
Суммарные потери диода
(2.9)
Вт
Результирующие потери в IGBT с обратным диодом определяются по формуле
(2.10)
Вт
Максимальное допустимое переходное сопротивление охладитель - окружающая среда °C/Вт, в расчете на пару IGBT/FWD (транзистор/обратный диод)
(2.11)
где Та – температура охлаждающего воздуха, 45–50 °С; Тс – температура теплопроводящей пластины, 90–110 °С; Рm – суммарная рассеиваемая мощность, Вт, одной парой IGBT/FWD, Rth(c-f) – термическое переходное сопротивление корпус–поверхность теплопроводящей пластины модуля в расчете на одну пару IGBT/FWD, °С/Вт.
Температура кристалла IGBT определяется по формуле
(2.12)
где Rth(j-c)q – термическое переходное сопротивление кристалл–корпус для IGBT части модуля. При этом должно выполняться неравенство
Tja ≤ 125 0C.
Температура кристалла обратного диода FWD
(2.13)
где Rth(j-c)d – термическое переходное сопротивление кристалл–корпус для FWD части модуля. Должно выполняться неравенство Тj ≤ 125 0C.
... . Целью дипломного проекта является разработка и исследование автоматической системы регулирования (АСР) асинхронного высоковольтного электропривода на базе автономного инвертора тока с трехфазным однообмоточным двигателем с детальной разработкой программы высокого уровня при различных законах управления. В ходе конкретизации из поставленной цели выделены следующие задачи. Провести анализ ...
... (М) при заданных скоростях ветрового потока (ВП). При этом математическое описание параметров ВП может быть получена вероятностными методами. Рисунок 1.9 – Структурная схема ВЭУ Одним из возможных направлений разработки АЭП имитатора является его реализация на базе привода постоянного тока (рис. 1.10). Одним из достоинств ДПТ является широкое и плавное регулирование скорости вращения, ...
0 комментариев