Груз силой тяжести G=350 Н удерживается тросом, перекинутым через блок А, ось которого укреплена на стержнях АВ и АС. Определить силы реакции в стержнях, если углы на рис.8.1 равны, соответственно: α=60º, β=15º, γ=30º. Рисунок не выдержан в масштабе.
Дано:
G=350 Н
α=60º
β=15º
γ=30
RA, RB - ?
T=G, т.к. трение в блоке отсутствует
Запишем уравнение равновесия для стержней. В качестве объекта равновесия примем точку А. Изобразим действующие на нее силы.
ΣFx=0
Tsin30-RCsin60-RBsin75=0
ΣFy=0
G+Tcos30-RBcos75-RCcos60=0
Получили два уравнения с двумя неизвестными. Для упрощения процесса решения подставим числовее значения известных величин.
350sin30-RСsin60-RBsin75=-175-0,866RС-0.966RB=0
49,6-0,259RB-0.5 (-202,1-1,1RB) =51,9+0,291RB=0
RB=-51,9/0.291=-178,35 Н
RC=-202,1-1,1 (-178,35) =-5,92 Н
Знак "-" указывает на то, что силы направлены в сторону противоположную указанной на схеме.
Ответ: RB=-178,35 Н
RC=-5,92 Н
Задача 2
По заданному графику проекции скорости точки, движущейся прямолинейно, построить графики ее перемещения и ускорения. Какой путь прошла точка? На каком максимальном расстоянии от исходного положения она находилась в процессе движения? На каком расстоянии от исходного положения она находится в конце движения?
Для построения графиков перемещения и ускорения необходимо записать уравнения скорости на каждом участке представленного графика.
Участок 1. t от 0 до 10 с
V1=const=10 м/с
Участок 2. t от 10 до 20 с
V2=2t-10
Участок 3. t от 20 до 30 с
V3=const=30 м/с
Участок 4. t от 30 до 40 с
V4=120-3t м/с
Для построения графиков перемещений проинтегрируем уравнения полученные выше
Найдем константу С. S (0) =0=10·0+C → C=0, S1=10t
S1 (10) =10·10=100
S2 (10) =102-10·10+C → C=100
S2 (20) =202-20·10+100=300
S3 (20) =20·30+C=300 → C=-300
S3 (30) =30·30-300=600
S4 (30) =120·3-302+C=600 → C=-1590
Для построения графиков ускорений продифференцируем уравнения скоростей на разных участках
a1=
a2=2 м/с2
a3=0
a4=-3 м/с2
График зависимости перемещения от времени м/с2
График зависимости ускорения от времени
Путь пройденный точкой численно равен площади под графиком зависимости скорости от времени
S=10·10+ (10·10+0,5·10·20) +10·30+0,5·10·30=750 v
В данном случае максимальное расстояние от исходного положения составит 750 м, точка в конце движения будет находится также на расстоянии 750 м.
Задача 8.3 В механизме качающегося грохота (рис.8.3) определить угловую скорость кривошипа О2В=3r и скорость ползуна D при вертикальном положении кривошипа O1A, если АВ=CD=2r. Отношение BC/CO2=3/5, угловая скорость кривошипа О1А равна ω=6 рад/с, углы α=60º, β=45º. Длина кривошипа O1A равна r=0.1м.
Дано:
O1A=r=0,1 м
AB=CD=2r=0,2 м
O2B=3r=0,3 м
ωOA1=6 рад/с
α=60º
β=45º
ωO2B, VD - ?
Построим положение механизма в соответствии с данными условиями задачи.
Для определения необходимых нам скоростей необходимо провести ряд промежуточных вычислений.
Определим скорость VA
VA=ωO1A·r/2=6·0,1=0,6 м. с (VA┴O1A)
Скорость VA определяем с помощью теоремы о проекциях скоростей двух точек тела (стержня АВ) на прямую соединяющую эти точки (прямая АВ).
VA=VBcos30 → VB=0.6/cos30=0,69 м/c2
Построим мгновенный центр скоростей (МЦС) - точка лежащая на пересечении перпендикуляров к векторам VAи VB
ωO2B= рад/с
Определяем VD. Точка D принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно и стержню CD. Поэтому чтобы найти ее скорость достаточно знать скорость какой-нибудь другой точки этого стержня и направление VD.
Величину VC найдем из пропорции
VC= (VC┴СМЦС)
Скорость VD определяем с помощью теоремы о проекциях скоростей двух точек тела (стержня CD) на прямую соединяющую эти точки (прямая CD).
VDcos45=VCcos15 → VD=0,5·cos15/cos45=0,68 м/c2
Ответ: ωO2B= рад/с; VD=0,68 м/c2
Задача 3
Доска длиной l=6м, свободно положенная на две разновысокие опоры А и В, получив начальную скорость v0=0.5м/с, соскальзывает с опор вниз. Упадет ли доска с них, если коэффициент трения между доской и опорами f=0.6, а размеры на рис.8.4: a=0.3l, b=0.5l, h=0.14l.
Дано:
l=6м
v0=0.5м/с
f=0.6
a=0.3l
b=0.5l
h=0.14l
s - ?
Запишем сразу уравнение равновесия для доски находящейся в покое
ΣFx=0-FтрА+Qcosα-FтрB=0
FтрА=FтрВ=f·N=f·Qsinα (Ra=Rb=N)
отсюда
Qcosα-2f·Qsinα=0
Запишем 3-й закон Ньютона для доски начавшей движение
m=mg (cosα-2fsinα)
=g (cosα-2fsinα)
Проинтегрируем полученное уравнение
=Vx=g (cosα-2fsinα) t+C1
x=g (cosα-2fsinα) t+C1t+C2
Найдем неизвестные cosα и sinα
sin2α+cos2α=1
Найдем постоянные С1 и С2
При t=0 Vx (0) =0.5 м/с → С1=0,5
При t=0 x (0) =0 → С2=0
Окончательно уравнение движения доски примет вид
V=9.8 (0.28-2·0.6·0.96) t+0,5=-8,55t+0,5
x=-4.27t2+0.5t
Найдем время, когда доска остановится
V=0 → t=0.5/8.55=0.06 c
Путь пройденный доской за это время
x=-4.27·0.062+0.5·0.06=0.015 м
Для того чтобы доска упала она должна пройти путь равный длине его верхней части а=0,3·6=1,8 м. В нашем случае это не происходит, следовательно доска не упадет.
Задача 4
На однородной балке массой m=3т (рис.8.5) установлена лебедка силой тяжести G=25кН, поднимающая на тросе, наматывающемся на барабан d=0.1l, груз силой тяжести Q=12кН с ускорением а=3м/с2. Определить нагрузки на опоры А и В, если b=0.4l, c=0.2l. Массу троса не учитывать.
Дано:
m=3т
G=25кН
d=0.1l
Q=12кН
а=3м/с2
b=0.4l
c=0.2l
RA, RB - ?
Запишем уравнения равновесия
ΣFx=0 RAx=0
ΣFy=0 RAy-G-Q--Mg+RBy=0
ΣMA=0 -Gb-Qz-
где
Получили два уравнения с двумя неизвестными, найдем искомые реакции
RBy= кН
RAy=G+Q+25+12+3.67-23=17,67 кН
Ответ: RBy=23 кН, RAy=17,67 кН
Похожие работы
... A, A, B (реакция неподвижной шарнирной опоры А изображаем двумя ее составляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости). Составляем три уравнения равновесия: 1) ∑ FKX=0; XA+F4*coς 60 °+ F1*coς 30 °=0 2) ∑ FKY=0; YA-F4*ςin 60 °+ F1* ςin 30 °+RB=0 3) ∑ MA (FK)=0; -F4*ςin 60 °*2l+ F1* ςin 30 °*3l+F1* ...
... условий взаимной уравновешенности системы сил является одной из основных задач статики. На основе изложенной в первой главе курсовой работы алгоритм конструкции языка программирования Паскаль составим и решим ряд задач по прикладной механике. Сформулируем задачу по статике первому разделу прикладной механики. Задача. Найти центр тяжести тонкого круглого однородного стержня изогнутого по дуге ...
... . В 18. Д – 1. Дано: VA = 0, a = 30°, f = 0,1, ℓ = 2 м, d = 3 м. Найти: h и t. Решение: Рассмотрим движение камня на участке АВ. На него действуют силы тяжести G, нормальная реакция N и сила трения F.Составляем дифференциальное уравнение движения в проекции на ось X1 : = G×sina - F , (F = f×N = fG×cosa) Þ = g×sina - fg ...
(3) w3z=w3z (j1, j2, j3, VM); w4z=w4z (j1, j2, j3, VM) или Vc=Vc (j1, j2, j3, VM) Из уравнений (3) определяют угловые скорости звеньев для фиксированного момента времени при заданных в этот момент значениях j1, j2, j3. Изменение j1, j2, j3, а следовательно и w1z, w2z, w3z во времени определится,если дополнить систему (3) уравнениями: ...
0 комментариев