2.1 Масковий метод

Найпростішим методом отримання заданої конфігурації плівкових елементів є масковий, при якому нанесення кожного шару тонкоплівкової структури здійснюється через спеціальний трафарет. При масковому методі рекомендується така послідовність формування шарів ІС:

1)  напилення резисторів, провідників і контактних площадок;

2)  міжшарова ізоляція;

3)  другого шару для перетину провідників;

4)  нижніх обкладань конденсаторів;

5)  діелектрика;

6)  верхніх обкладок конденсаторів;

7)  захисного шару.

Плівка з напилюваного матеріалу осідає на підкладці в місцях, відповідних малюнку вікон в масці. Як матеріал знімної маски використовують плівки берилієвої бронзи завтовшки 0,1-0,2 міліметра, покриту шаром нікелю завтовшки близько 10 мкм.

Нанесення плівок через знімні маски здійснюють термічним випаровуванням у вакуумі або іонно-плазмовим розпилюванням.

В результаті викривлення маски в процесі напилення плівки між маскою і підкладкою утворюється зазор, що приводить до підзапалу. Крім того, розміри вікон в масці при багатократному напиленні зменшуються. Все це обумовлює меншу точність даного методу в порівнянні з фотолітографією.

Не дивлячись на недоліки масковий метод є найпростішим, технологічнішим і високопродуктивним. [1]


2.2 Метод фотолітографії

Цей метод дозволяє отримати конфігурацію елементів будь-якої складності і має велику точність в порівнянні з масковим, проте він складніший.

Існує декілька різновидів фотолітографії. Метод прямої фотолітографії передбачає нанесення суцільної плівки матеріалу тонкоплівкового елементу, формування на її поверхні фоторезистивної контактної маски, витравляння через вікна у фоторезисті зайвих ділянок плівки. Контактна маска з фоторезиста або іншого матеріалу, стійкішого до подальших технологічних дій, відтворює малюнок фотошаблону з плівки. [3]

Експонований фоторезист віддаляється (розчиняється) після чого плівка резистивного матеріалу видаляється з ділянок, не захищених фоторезистом. Далі на підкладці у вакуумі наноситься суцільна плівка алюмінію. Після фотолітографії і травки алюмінієм провідна плівка залишається в областях контактних площадок і провідників. При цьому сформовані на попередньому етапі резистори не ушкоджуються. Після нанесення поверх провідних елементів і резисторів захисного шару скла проводиться ще одна, третя обробка фотолітографії, в результаті якої скло віддаляється з областей над контактними площадками, а також по периметру плати. [1]

Метод зворотної (вибуховий) фотолітографії відрізняється від попереднього тим, що спочатку на підкладці формується контактна маска, потім наноситься матеріал плівкового елементу, після чого проводиться видалення контактної маски.

При методі фотолітографії для виготовлення ІС, що містять резистори і провідники, використовують два технологічні маршрути. Перший варіант – напилення матеріалу резистивної і провідної плівок; фотолітографія провідного шару; фотолітографія резистивного шару; нанесення захисного шару. Другий варіант – після проведення перших двох операцій, тих же що і в попередньому варіанті, спочатку здійснюють фотолітографію і травлять одночасно провідний і резистивний шари, потім другу фотолітографію для видалення провідного шару в місцях формування резистивних елементів, після чого слідує нанесення захисного шару і фотолітографія для розтину вікон в нім над контактними площадками. [2]

При виробництві плівкових мікросхем, що містять провідники і резистори з двох різних (високоомного і низькоомного) резистивних матеріалів, рекомендується така послідовність операцій: почергове напилення плівок спочатку високоомного, потім низькоомного резистивних матеріалів; напилення матеріалу провідної плівки; фотолітографія провідного шару; фотолітографія низькоомного резистивного шару; фотолітографія високоомного резистивного шару; нанесення захисного шару. [2]

2.3 Комбінований метод

При поєднанні маскового методу і фотолітографії методів для мікросхем, що містять резистори, провідники і конденсатори, використовують два варіанти:

1) напилення резисторів через маску, напилення провідної плівки на резистивну; фотолітографія провідного шару; почергове напилення через маску нижніх обкладань, діелектрика і верхніх обкладань конденсатора; нанесення захисного шару;

2) напилення резистивної плівки і провідної плівки на резистивну; фотолітографія провідного і резистивного шарів; фотолітографія провідного шару; напилення через маску нижніх обкладань, діелектрика і верхніх обкладань конденсатора; нанесення захисного шару.

Для схем, що не містять конденсаторів, застосовують один з трьох варіантів:

1) напилення через маску резисторів і провідної плівки; фотолітографія провідного шару; нанесення захисного шару;

2) напилення резистивної плівки; фотолітографія резистивного шару; напилення через маску провідників і контактних майданчиків; нанесення захисного шару;

3) напилення резистивної плівки, а також контактних майданчиків і провідників через маску; фотолітографія резистивного шару; нанесення захисного шару. [1]

 
РОЗДІЛ 3. МЕТОДИ МЕТАЛІЗАЦІЇ ІНТЕГРАЛЬНИХ СХЕМ 3.1 Термічне (вакуумне) напилення

Схема цього методу показана на рис 3.1. Металевий або скляний ковпак 1 розташований на опорній плиті 2. Між ними знаходиться прокладка 3, що забезпечує підтримку вакууму після відкачування повітря з під ковпака. Підкладка 4, на яку проводитися напилення, закріплена на утримувачі 5. До утримувача прикріплений нагрівач 6 (напилення проводитися на нагріту підкладку). Випарник 7 включає в себе нагрівач і джерело напилюваної речовини. Поворотна заслінка 8 перекриває потік парі від випарника до підкладки: напилення триває протягом часу, коли заслінка відкрита.[3]

Рис 3.1. Термічне (вакуумне) напилення

Нагрівач зазвичай є ниткою або спіраллю з тугоплавкого металу (вольфрам, молібден і ін.), через який пропускається достатньо великий струм. Джерело напилюваної речовини зв'язується з нагрівачем по-різному: у вигляді дужок, що навішуються на нитку напруження; у вигляді невеликих стержнів, що охоплюються спіраллю, у вигляді порошку, засипаного в тигель, що нагрівається спіраллю і тому подібне. Замість ниток розжарення останнім часом використовують нагрівання за допомогою електронного променя або променя лазера.[3]

На підкладці створюються найбільш сприятливі умови для конденсації пари, хоча частково конденсація пари відбувається і на стінках ковпака. Дуже низька температура підкладки перешкоджає рівномірному розподілу адсорбованих атомів: вони групуються в "острівці" різної товщини, часто не зв'язані один з одним. Навпаки, дуже висока температура підкладки приводить до відриву атомів, що тільки що осіли, до їх "перевипаровування". Тому для отримання якісної плівки температура підкладки повинна лежати в деяких оптимальних межах (зазвичай 200-4000С). Швідкість наростання плівок залежить від ряду чинників (температура нагрівача, температура підкладки, відстань від випарника до підкладки, тип напилюваного матеріалу і ін.) і лежить в межах від десяти до десятків нанометрів в секунду.[3]

Міцність зв'язку – зчеплення плівки з підкладкою або іншою плівкою – називається адгезією. Деякі поширені матеріали (наприклад, золото) мають погану адгезію з типовими підкладками, зокрема з кремнієм. Утаких випадках на підкладку спочатку наносять так званий підшар, характерний хорошою адгезією, а потім на нього напилюють основний матеріал, у якого адгезія з підшаром теж хороша. Наприклад, для золота підшаром можуть бути нікель або титан.[3]

Для того, щоб атоми газу, що летять від випарника до підкладки, зазнавали мінімальну кількість зіткнень з атомами решти газу і тим самим мінімальне розсіювання, в просторі підковпака потрібно забезпечувати достатньо високий вакуум. Критерієм необхідного вакууму може служити умова, щоб середня довжина вільного пробігу у декілька разів перевищувала відстань між випарником і підкладкою. Проте цієї умови часто недостатньо, оскільки будь-яка кількість залишкового газу може стати забрудненням напилюваної плівки і зміною її властивостей. Тому в принципі вакуум в установках термічного напилення має бути якомога вищим. У даний час вакуум нижче 10-6 мм рт. ст. вважається за неприйнятний, а у ряді установок він доведений до 10-11 мм рт. ст.[3]

Головними достоїнствами розглянутого методу є його простота і можливість отримання виключно чистих плівок (при високому вакуумі). Проте у нього є і серйозні недоліки: важкість напилення тугоплавких матеріалів і неможливість відтворення на підкладці хімічного складу випаровуваної речовини. Останнє пояснюється тим, що при високій температурі хімічні сполуки диссоціюють, а їх складові конденсуються на підкладці роздільно. Природною є вірогідність того, що нова комбінація атомів на підкладці не відповідатиме структурі початкової молекули.[3]

3.2 Катодне напилення

Схема цього методу показана на рис.3.2. Тут більшість компонентів ті ж, що і на рис.3.1. Проте відсутній випарник; його місце по розташуванню (і по функціях) займає катод 6, який або складається з напилюваної речовини, або електрично контактує з нею. Роль анода виконує підкладка разом з утримувачем.[3]

Простір підковпака спочатку відкачують до 10-5 – 10-6 мм рт. ст., а потім в нього через штуцер 8 вводять деяку кількість очищеного нейтрального газу (частіше за весь аргон), так що створюється тиск 10-1 – 10-2 мм рт. ст. При подачі високої (2 – 3 кВ) напруги на катод (анод заземляють з міркувань електробезпеки) в просторі анод-катод виникає аномальний тліючий розряд, що супроводиться виділенням – іонної плазми.


Рис 3.2. Катодне напилення

Рис.3.2.

 
Специфіка аномального тліючого розряду полягає в тому, що в прикатодному просторі утворюється настільки сильне електричне поле, що позитивні іони газу, що прискорюються цим полем і бомбардуючий катод, вибивають з нього не тільки електрони (необхідні для підтримки розряду), але і нейтральні атоми. Тим самим катод поступово руйнується. У звичайних газорозрядних приладах руйнування катода не допустиме (тому в них використовується нормальний тліючий розряд), але в даному випадку вибивання атомів з катода є корисним процесом, аналогічним випаровуванню.[3]

Важливою перевагою катодного напилення в порівнянні з термічним є те, що розпилювання катода не пов'язане з високою температурою. Відповідно відпадають труднощі при напиленні тугоплавких матеріалів і хімічних сполук.[3]

Проте в даному методі катод (тобто напилюваний матеріал), будучи елементом газорозрядного ланцюга, повинний володіти високою електропровідністю. Таку вимогу обмежує асортимент напилюваних матеріалів. Зокрема, виявляється неможливим напилення діелектриків, зокрема багатьох оксидів і інших хімічних сполук, поширених в технології напівпровідникових приладів.[3]

Це обмеження значною мірою усувається при використанні так званого реактивного (або хімічного) катодного напилення, особливість якого полягає в додаванні до основної маси інертного газу невеликої кількості активних газів, здатних утворювати необхідні хімічні сполуки з матеріалом катода, що розпилюється. Наприклад, домішавши до аргону кисень, можна виростити на підкладці плівку оксиду. Домішавши азот або монооксид вуглецю - нітрид або карбіди відповідних металів. В залежності від парціального тиску активного газу хімічна реакція може відбуватися або на катоді (і тоді на підкладці осідає вже готове з'єднання), або на підкладці – аноді.[3]

Недоліками катодного напилення в цілому є деяка забрудненість плівок (через використання порівняно низького вакууму), менша в порівнянні з термічним методом швидкість напилення (з тієї ж причини), а також складність контролю процесів.[3]

  3.3 Іонно-плазмове напилення

Рис 3.3. Іонно-плазмове напилення


Схема цього методу показана на рис 3.3. Головна його особливість в порівнянні з методом катодного напилення полягає в тому, що в проміжку між електродом 9 – мішенню (з нанесеним на неї напилюваним матеріалом) і підкладкою 4 діє незалежний, "черговий" газовий розряд. Розряд має місце між електродами 6 і 7, причому тип розряду – несамостійний дуговий. Для цього типу розряду характерні: наявність спеціального джерела електронів у вигляді розжарюваного катода (6), низька робоча напруга (десятки вольт) і велика щільність електронно-іонної плазми. Простір підковпака, як і при катодному напиленні, заповнений нейтральним газом, але при нижчому тиску (10-3 – 10-4мм рт. ст.).[3]

Процес напилення полягає в наступному. На мішень щодо плазми (практично – щодо заземленого анода 7) подається від’ємний потенціал (2-3кВ), достатній для виникнення аномального тліючого розряду і інтенсивного бомбардування позитивними іонами плазми. Атоми мішені потрапляють на підкладку і осідають на ній. Таким чином, принципових відмінностей між процесами катодного і іонно-плазмового напилення немає. Розрізняють лише конструкції установок: їх називають відповідно 2-х і 3-х електродними.[3]

Початок і кінець процесу напилення визначаються подачею і відключенням напруги на мішені. Якщо передбачити механічну заслінку, то її наявність дозволяє реалізувати важливу додаткову можливість: якщо до початку напилення закрити заслінку і подати потенціал на мішень, то матиме місце іонне очищення мішені. Воно корисне для підвищення якості напилюваної плівки. Аналогічне очищення можна проводити на підкладці, подаючи на неї (до напилення плівки) негативний потенціал.[3]

При напиленні діелектричних плівок виникає трудність, пов'язана з накопиченням на мішені позитивного заряду, що перешкоджає подальшому іонному бомбардуванню. Це долається шляхом використання так званого високочастотного іонно-плазмового напилення. У цьому випадку на мішень на ряду з постійною негативною напругою подається змінна напруга високої частоти (близько 15 МГц) з амплітудою, що перевищує постійну напругу. Тоді під час більшої частини процесу результуюча напруга негативна; при цьому відбувається звичайний процес розпилювання мішені і на ній накопичується позитивний заряд. Проте під час невеликої частини процесу результуюча напруга позитивна; при цьому мішень бомбардується електронами, тобто розпилювання не відбувається, та зате компенсується накопичений позитивний заряд.[3]

Варіант реактивного (хімічного) іонно-плазмового напилення відкриває ті ж можливості отримання оксидів, нітриду і інших з'єднань, що і реактивне катодне напилення.[3]

Переваги іонно-плазмового методу в порівнянні з катодним полягають в більшій швидкості напилення і більшій гнучкості процесу (можливість іонного очищення, можливість відключення робочого ланцюга без переривання розряду і ін.). Крім того, на якості плівок позначається вищий вакуум.[3]

3.4 Анодування

Один з варіантів хімічного іонно-плазмового напилення називають анодуванням. Цей процес полягає в окисленні поверхні металевої плівки (що знаходиться під позитивним потенціалом) негативними іонами кисню, що поступають з плазми газового розряду. Для цього до інертного газу (як і при чисто хімічному напиленні) слід додати кисень. Тому, що анодування здійснюється не нейтральними атомами, а іонами.[1]

Хімічне напилення і анодування проходять спільно, оскільки в газорозрядній плазмі (якщо вона містить кисень) співіснують нейтральні атоми і іони кисню. Для того, щоб анодування переважало над чисто хімічним напиленням, підкладку розташовують лицем (тобто металевою плівкою) убік, протилежно катоду, щоб на неї не попадали нейтральні атоми.

У міру наростання окисного шару струм в анодному ланцюзі падає, оскільки оксид є діелектриком. Для підтримки струму потрібно підвищувати живлячу напругу. Оскільки частина цієї напруги падає на плівці, процес анодування протікає в умовах великої напруженості поля в окисній плівці. У результаті і надалі вона володіє підвищеною електричною міцністю.[1]

До інших переваг анодування відносяться велика швидкість окислення і можливість управління процесом шляхом зміни струму в ланцюзі розряду. Якість оксидних плівок, що отримуються даним методом, вище, ніж при використанні інших методів.[1]

3.5 Електрохімічне осадження

Цей метод отримання плівок відрізняється від попередніх тим, що робочим середовищем є рідина. Проте характер процесів схожий з іонно-плазмовим напиленням, оскільки і плазма і електроліт є квазінейтральною сумішшю іонів і неіонізованих молекул або атомів. А головне, осадження відбувається також поступово (пошарово) як і напилення, тобто забезпечує можливість отримання тонких плівок.[2]

Електрохімічне осадження історично розвинулося значно раніше за інші розглянуті методи – ще в XIX столітті. Вже десятки років назад воно широко використовувалося в машинобудуванні для різного роду гальванічних покриттів (нікелювання, хромування і т. п.). У мікроелектроніці електрохімічне осадження не є альтернативою термічному і іонно-плазмовому напиленню; воно доповнює їх і поєднується з ними.[4]

У основі електрохімічного осадження лежить електроліз розчину, що містить іони необхідних домішок. Наприклад, якщо потрібно осадити мідь, використовується розчин мідного купоросу, а якщо золото або нікель – розчини відповідних солей.[4]

Іони металів дають в розчині позитивний заряд. Тому, щоб осадити металеву плівку, підкладку слід використовувати як катод. Якщо підкладка є діелектриком або має низьку провідність, на неї заздалегідь наносять тонкий металевий підшар, який і служить катодом. Підшар можна нанести методом термічного або іонно-плазмового напилення.[4]

Щоб здійснити електрохімічне анодування, окислювану плівку металу слід використовувати як анод, а електроліт повинен містити іони кисню.

Велика перевага електрохімічного осадження перед напиленням полягає в набагато більшій швидкості процесу, яка легко регулюється зміною струму. Тому основна сфера застосування електролізу в мікроелектроніці – це отримання порівняльне товстих плівок (10 – 20 мкм і більш). Якість (структура) таких плівок гірша, ніж при напиленні, але для ряду застосувань, плівки виявляються цілком прийнятними.[5]

 
ВИСНОВКИ

В даній курсовій роботі розглянуто компоненти та елементи інтегральних мікросхем.

1. Інтегральна схема - електронний прилад, який складається з багатьох мініатюрних транзисторів та інших елементів схеми, об'єднаних у моноблок (чіп).

2. Сукупність технологічних операцій, складових технологічний маршрут виробництва тонкоплівкових ІС, включає підготовку поверхні підкладки, нанесення плівок на підкладку і формування конфігурацій тонкоплівкових елементів, монтаж і збірку навісних компонентів, захист і герметизацію ІС від зовнішніх дій. Важливе значення при створенні ІС мають контрольні операції, а також підготовка виробництва: виготовлення комплекту масок і фотошаблонів, контроль компонентів ІС і початкових матеріалів.

3. Нанесення плівок на підкладку ІС здійснюється:

а) термічним випаровуванням матеріалів у вакуумі з конденсацією пари цих матеріалів на поверхню підкладки;

б) іонним розпилюванням мішеней з матеріалів, що наносяться, з перенесенням атомів мішеней на поверхню підкладки;

в) хімічним осадженням плівок в результаті протікання хімічних реакцій в газовій фазі над поверхнею підкладки з утворенням плівкотвірної речовини з подальшим його осадженням на підкладку.


ЛІТЕРАТУРА

1.  Малышев И.А. "Технология производства интегральных микросхем". – М.: Радио и связь, 1991.

2.  В.А. Хрусталев. Нанесение тонких пленок в вакууме методами термического испарения и ионно-плазменного распыления. / Машиностроение. Энциклопедия / Ред. совет: К.В. Фролов и др. – М.: Машиностроение. Технологии, оборудование и системы управления в электронном машиностроении. Т. III-8 / Ю.В. Панфилов, Л.К. Ковалев, В.Г. Блохин и др.; Под общ. ред. Ю.В. Панфилова. 2000, с.208-213.

3.  Технология вакуумной металлизации полимерных материалов. / Ю.В. Липин, А.В. Рогачев, С.С. Сидорский, В.В. Харитонов. – Гомель: Гомельское отдел. Белорус. инж. технологич. академии, 1994. – 206 с.

4.  Козлов В.М. Новое оборудование и технологические процессы для нанесения покрытий в вакууме // Труды постоянно действующего научно-технического семинара "Электровакуумная техника и технология" (за 1997/98 гг.) Под ред. А.В. Горина – М.: 1999.

5.  Одиноков В.В. Современное вакуумное оборудование для нанесения пленок магнетронным распылением в микроэлектронике // Труды постоянно действующего научно-технического семинара "Электровакуумная техника и технология" (за 1997/98 гг.) Под ред. А.В. Горина – М.: 1999.

6.  Ядин Э.В., Аусвальд Э.Я. Вакуумные установки для металлизации рулонных материалов. / Металлизация в вакууме, Рига: "АВОТС", 1983, с. 89-101.


Информация о работе «Фізико-технологічні основи металізації інтегральних схем»
Раздел: Физика
Количество знаков с пробелами: 31732
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
63441
0
4

... (задаючий) показує, яким чином виконуються помітки суміщення й обов'язкові для складних приладів тестові структури, що дозволяють перевіряти роздільну здатність фотолітографії, технологічні параметри (поверхневий­ опір, дефекти окисла) і електричні параметри пристрою. До другого виду відносяться вказівки про методику і критерії контролю характеристик виготовлених шаблонів: розмірів, сумісності, ...

Скачать
51546
2
5

... фоторезиста, тому крім підтримки чистоти треба домагатись того, щоб сила контактування була мінімальною. Радикальним рішенням є перехід на безконтактну фотолітографію - проекційну і фотолітографію із зазором. 3.Зниженню дефектів значною мірою сприяє автоматизація технологічних операцій і особливо процесів завантаження, транспортування і вивантаження пластин; маніпулювання пінцетами у виробництві ...

Скачать
28616
3
0

... фіксація ЕРЕ в потрібному положенні. Встановлюють ЕРЕ в такій послідовності: резистори, конденсатори, мікросхеми. Розміщення ЕРЕ на друкованій платі повинне сприяти спрощенню технологічного процесу і можливості застосовувати механізацію. [2] Найзручніше розташовувати всі елементи на тій стороні плати, де немає друкованих провідників. Таке розташування полегшує процес паяння. При розміщенні ЕРЕ ...

Скачать
174575
5
3

... для фахівців в області філософії, історії науки, религиоведения, соціології, соціальної психології, мистецтвознавства і інших наукових дисциплін. 2.3 Модернізація змісту астрономічної освіти на основі культурологічного підходу Модернізація освіти, що базується на інформаційно-комунікаційних технологіях, припускає формування нових моделей учбової діяльності, що використовують інформаційні і ...

0 комментариев


Наверх