2.1 Досліди, що послужили основою виникнення хвильової теорії світла

 

Оптика є, ймовірно, тим розділом фізики, в якому вперше були проведені вимірювання. В III ст. до н.е. Евклід вже знав закони видбивання світла від плоского дзеркала, а в II ст. до н.е. Птолемей досліджував заломлення світла, але його досліди дали невірні результати.

В сучасному вигляді закон заломлення світла був сформульований В.Снеллиусом (1580—1626). Висновок Снелліуса не зберігся, швидше за все це була теоретична робота. Р.Декарт знов сформулював закон заломлення світла в 1638 р. і привласнив йому ім'я Снелліуса.

XVII в. був часом справжнього прогресу оптики. Одним з важливих питань було питання про те, як розповсюджується світло. В дослідах учня Галілея Торрічеллі по вимірюванню атмосферного тиску в 1643 р. з'ясувалося, що можна бачити через верхню частину барометра; це означало, що світло розповсюджується у вакуумі і для його розповсюдження не потрібне матеріальне середовище.

В 1669 р. Э. Бартолин (1625-1698) встановив, що деякі кристалічні речовини не підкоряються закону заломлення, в них відбувається розділення променя на два.

Християн Гюйгенс, як ми вже знаємо, займався проблемами механіки і оптики. Саме ці розділи фізики зіграли ведучу роль в становленні класичної фізики. Не випадково багато учених займалися одночасно вивченням і механічних, і оптичних явищ.

Гюйгенс, захопившися в молодості шліфуванням скла, виготовив лінзи з величезними фокусними відстанями (більше 60 м), удосконалив конструкцію телескопа і проводив астрономічні спостереження. Найбільшим внеском Гюйгенса в розвиток фізики була розроблена ним теорія світла. Свої переконання на світло Гюйгенс неодноразово представляв на засіданнях Паризької академії наук і в 1690 р. висловив їх в роботі «Трактат про світло».

Гюйгенс сформулював принцип, який тепер носить його ім'я. Згідно цьому принципу світло — хвильове явище, і кожну точку середовища, до якого дійшла світлова хвиля, можна вважати джерелом вторинних хвиль, а положення хвильового фронту визначається огинаючій вторинних хвиль в певний момент часу.

Вважаючи світло подовжніми хвилями, Гюйгенс пояснив явище заломлення світла.

Ньютон же вважав, що світло є потоком корпускул, що рухаються за інерцією. Таке уявлення дозволило пояснити прямолінійне розповсюдження світла.

Складнощі виникли при поясненні подвійного променезаломлення в кристалі ісландського шпату. Це явище не можна було пояснити, виходячи з припущення про те, що світло є подовжніми хвилями, як вважав Гюйгенс. Для двох частин однієї і тієї ж подовжньої хвилі речовина не могла володіти різними показниками заломлення. Різне заломлення світла кристалом (розділення пучка світла на два після проходження через кристал), виходячи з корпускулярних представлень Ньютона, можна було пояснити, якщо припустити, що частинки світла анізотропні, як магніти, і кристал їх сортує.

Ф. Грімальді, намагаючись з'ясувати, до якого ступеня можна довести різкість тіні, досвідченим шляхом встановив, що при освітленні шпилькового отвору тінь розмивається, з'являються ряди кольорових смуг. Досвід їм проводився з сонячним світлом в затемненій кімнаті. Результати дослідів були опубліковані в 1665 р. — через два роки після смерті Грімальді. Ньютон не надав значення дослідам Грімальді, хоча в них фактично було відкрито явище дифракції світла, що неспростовно доводило його хвильові властивості.

Ефект обгинання світлом перешкод перевідкриті Р.Гуком в 1672 р. Цими дослідами Ньютон зацікавився і провів досліди за допомогою звужуючої щілини, але із якихось причин залишив їх незавершеними.

Погляди Ньютона на властивості світла не були однозначними. Ньютон допускав обгинання світлом перешкод. Виконавши експеримент на установці, яка тепер носить назву «кільця Ньютона», він фактично спостерігав інтерференцію світла. Ньютон висунув припущення про те, що корпускули викликають коливання в сітківці ока, створюючи різні колірні відчуття: «найкоротші» — відчуття фіолетового кольору, «найдовші» — червоного.

Віддаючи перевагу корпускулярної теорії світла, Ньютон бачив ширше сучасників. Корпускулярні уявлення були лише частиною ньютонівських поглядів на світлові явища. Ньютон визнавав і досліджував також і хвильові властивості світла.

Таким чином, ми бачимо, що в поглядах Ньютона на природу світла був присутній корпускулярно-хвильовий дуалізм — визнання одночасного існування у світла і корпускулярних, і хвильових властивостей.

В кінці XVIII в. виникли сумніви в справедливості корпускулярної теорії: спостереження Грімальді вдалося пояснити на основі хвильових уявлень.

О.Ж.Френель створив повну хвильову теорію світла. Прихильник його поглядів Д.Араго провів разом з Френелем безліч дослідів. Зокрема, Френель і Араго провели експеримент, який дозволив знайти в центрі геометричної тіні світлу пляму, що виходило з хвильової теорії світла.

Хвильові властивості світла могли бути знайдений в явищах інтерференції і дифракції. Ці явища нерозривний пов'язані один з одним. Відмінність між ними полягає в тому, що в явищі дифракції бере участь один пучок світла, а в явищі інтерференції — два і більше.

Т.Юнг зрозумів, що не можна чекати інтерференцію від двох незалежних джерел світла, і в 1807 р. виконав досвід по виявленню не тільки дифракції, але і інтерференції світла.

Початок XIX ст. можна вважати часом, коли перемогла хвильова теорія світла.

В кінці XIX — початку XX в. у фізику прийшли квантові ідеї. Завдяки дослідженням теплового випромінювання, явища фотоефекту і цілого ряду інших явищ стало ясно, що світлу властиві не тільки хвильові, але і корпускулярні властивості.

Відродилися в певному значенні ідеї Ньютона про корпускулярні, переривисті властивості світла. Проте відродження цих ідей не було поверненням до уявлень XVII в.

Згідно квантовим ідеям світло одночасно володіє властивостями і хвилі, і частинки, не будучи ні тим, ні іншим. Світло — діалектична єдність переривчастого і безперервного, частинки і хвилі. Він володіє суперечливими властивостями, і ця суперечність зв'язана з тим, що людина як істота макроскопічна неминуче намагається перенести свої уявлення про оточуючому його макросвіт, зокрема уявлення про «морські хвилі і тенісні м'ячі» (по образному виразу Р.Фейнмана), на мікрооб'єкти.

Подвійність властивостей світла отримала назву корпускулярно-хвильового дуалізму. В науці затвердилася ідея, неявно присутня в переконаннях Ньютона ще в XVII в.

Досліди Ньютона по дисперсії і інтерференції світла

Дослідження в області оптики І.Ньютон почав вести, ще будучи студентом, а популярність як учений-фізик придбав після 1668 р., коли їм була виготовлена модель телескопа-рефлектора. В 1673 р. на засіданні Лондонського Королівського суспільства була представлена праця «Нова теорія світла і кольорів», в якому Ньютон описував свої досліди по дисперсії світла.

Погляди Ньютона на світлові явища, як вже наголошувалося, не були однозначними. Намагаючись з'єднати корпускулярні і хвильові уявлення, Ньютоном враховані корпускулярним уявленням, беручи активну участь в дискусії з питання про те, що таке світло, з Р.Гуком. Підсумок своїх досліджень в області оптики Ньютон опублікував тільки в 1704 р. — після смерті Гука — в творі «Оптика».

В 1666 р. И. Ньютон провів досліди з скляними призмами і відповів на питання: «Яка фізична властивість дозволяє світлу створювати такі прекрасні відчуття, як колір?» Результати цих дослідів були опубліковані в 1672 р.

В цій роботі Ньютон писав про те, як він експериментально встановив, що проміння, відмінне за кольором, по-різному заломлюється скляною призмою. Досвід полягав в наступному. Шматок щільного паперу з паралельними сторонами був розділений лінією, перпендикулярною паралельним сторонам. Одна частина шматка паперу була яскраво-червоною, інша яскраво-синьої. Цей шматок паперу розглядався через товсту скляну призму із заломлюючим кутом в 60°. Якщо призма розташовувалась переломним кутом в низ, то розфарбований папір через призму здавався піднятою, причому синя частина здавалася піднятою більше, ніж червона. Якщо ж призма розташовувалась заломлюючим кутом вгору, то частини паперу здавалися опущеними, і синій шматок здавався зміщеним вниз дещо більше, ніж червоний. Так було показано, що світло, що викликає відчуття синього кольору, заломлюється сильніше за світло, що викликає відчуття червоного кольору.

Далі в роботі йшлося про те, що до складу сонячного (білого) світла входить проміння різних кольорів — проміння, по-різному що заломлюються скляною призмою.

Досліди проводилися в сонячний день в темній кімнаті. Крізь виконаний у віконниці невеликий отвір (біля V3 дюйма) в кімнату проникало світло. Світло прямувало на призму, і на протилежній від вікна стіні кімнати виходило подовжене зображення Сонця з веселковим чергуванням кольорів. Ця веселкова смужка була спектром білого світла. Ньютон ввів сім основних кольорів спектру — червоний, оранжевий, жовтий, зелений, голубий, синій, фіолетовий. Спектр сонячного світла був безперервним, і кольори плавно переходили один в одного.

Потім Ньютон провів вирішальний експеримент: «частину спектру» (світло одного кольору) направив на іншу скляну призму. Друга призма подальшої зміни забарвлення не давала. Так було встановлено, що утворювати спектр — це не властивість призми, а властивість світла.

Для доказу складного складу білого світла після розкладання світла в спектр всі пучки спектру знов збиралися за допомогою лінзи — виходило біле світло.

В другій частині книги «Оптика» описані досліди Ньютона, що «стосуються віддзеркалень, заломлень і кольорів тонких прозорих тіл».

Щільно притискуючи один до одного дві скляні призми, «які випадково були дещо опуклими», Ньютон помітив, що світло по-різному проходило через ці призми: предмети, що знаходяться за призмами, були то видні, то не видні, залежно від того, як призми були притиснуті один до одного, тобто залежно від того, яким був прошарок повітря між призмами.

При малому значенні кута нахилу падаючого проміння до шару повітря (при великому значенні кута падіння) з'являлося багато кольорових дуг. Рухаючи призми один щодо одного, можна було добитися того, що дуги утворювали кольорові кільця.

Для більш точних спостережень Ньютон використовував два об'єктивні скельця від об'єктиву для телескопа —плоско-випукле і двоопукле (дві збираючі лінзи). Наклавши двоопуклу лінзу на плоску сторону другої лінзи, Ньютон злегка стискав скельця, при цьому спостерігалася поява кольорових кругів і зміна їх положень при різному натиску на лінзи.

При стисненні лінз діаметри кольорових кілець збільшувалися, а ширина кожного з кольорових кілець зменшувалася. Послідовність кольорів в кільцях зберігалася і відповідала послідовності спектральних кольорів, але в центрі різні кольори зміняли один одного. Врешті-решт в центрі з'являлася темна пляма.

При підйомі верхнього скла над нижній діаметр кілець зникав, товщина їх зростала, в центрі пляма була прозорою. За прозорою центральною плямою кольори йшли від синього до червоного. Було дуже важко розрізнити фіолетовий колір, іноді здавалося, що сусідні спектральні кольори зливаються, утворюючи біле кільце. Добре спостерігалося останнє з першої серії веселкових кілець червоне кільце. Далі слідувала ще одна серія кольорових кілець, тут вже майже всі кольори були виразно видні, слабіше за все був представлений зелений колір.

Ньютон спостерігав картину кольорових кілець як в проходячому, так і у відбитому світлі.

Зараз ми розуміємо, що Ньютон спостерігав явище інтерференції світла в тонкому шарі повітря, що заповнював проміжок між двома стеклами. Колір, ширина і діаметр кільця визначаються умовами максимумів і мінімумів для світла з різною довжиною хвилі при різній товщині повітряного прошарку. Крім того, грає роль частка того або іншого кольору в спектрі. Червона ділянка спектру представлена широкою частиною кольорової смужки, він спостерігається краще всього.

Таким чином, в експериментах з так званими кільцями Ньютона була знайдена періодичність, властива світлу і що не поєднується з уявленнями про світло як про потік корпускул.

Ньютон повторив досліди по дифракції світла різного кольору і встановив, що ширина смуг, що виникають при обгинанні світлом перешкод, залежить від кольору світла і що ширина смуг для світлових пучків червоного кольору більше, ніж для світлових пучків фіолетового кольору.

Таким чином, кінець XVII в. був ознаменований відкриттям інтерференції і дифракції світла, встановленням складного складу білого світла і, як буде показаний пізніше, доказом кінцівки швидкості розповсюдження світла. В XVIII в. хвильові уявлення про світло були практично забуті, більшість учених дотримувалася корпускулярних переконань. Ситуація серйозним чином змінилася на початку XIX в.


Информация о работе «Фундаментальні досліди з квантової оптики та їх висвітлення в шкільному курсі фізики»
Раздел: Физика
Количество знаков с пробелами: 89179
Количество таблиц: 3
Количество изображений: 11

Похожие работы

Скачать
135809
1
21

... зичної освіти, а й важливий чинник загального розвитку школяра та професійного становлення у будь-якій галузі. Перша проблема, яку потрібно вирішити, упроваджую чи елементи комп'ютерного моделювання при вивченні фізики – вибір інструментальних засобів його реалізації. У час зародження сучасних інформаційних технологій єдиним способом було використання мов програмування високого рівня. За останні ...

Скачать
191192
6
39

... принтера також містить різні мови опису даних (Adobe PostScript, PCL і тощо.). Ці мови знову ж таки призначені для того, щоб забрати частину роботи у комп'ютера і передати її принтеру. Розглянемо фізичний принцип дії окремих компонентів лазерного принтера. 2.5.29 Фотобарабан Як вже писалося вище, найважливішим конструктивним елементом лазерного принтера є фотобарабан, що обертається, за ...

Скачать
174575
5
3

... для фахівців в області філософії, історії науки, религиоведения, соціології, соціальної психології, мистецтвознавства і інших наукових дисциплін. 2.3 Модернізація змісту астрономічної освіти на основі культурологічного підходу Модернізація освіти, що базується на інформаційно-комунікаційних технологіях, припускає формування нових моделей учбової діяльності, що використовують інформаційні і ...

Скачать
51067
7
34

... многокутнику існують періодичні траєкторії. Тепер перейдемо до наступного розділу курсової роботи, де продемонстровано, як викладені теоретичні відомості застосовуються на практиці. Практичне застосування теорії математичних більярдів   Практичні задачі, що розв’язуються застосуванням правил побудови більярдних траєкторій Ось деякі олімпіадні задачі, що дуже витончено розв’язуються за ...

0 комментариев


Наверх