7.3 Расчёт и выбор аппаратов защиты и линии электроснабжения

В электрической сети возможны нарушения нормального режима работы: перегрузки, короткие замыкания, при которых ток в проводниках резко возрастает. Поэтому цеховые электрические сети должны быть надёжно защищены аппаратом, отключающим повреждённый элемент с наименьшими потерями времени. Защита электрических сетей КЗ должна быть предусмотрена во всех случаях [4, с. 195].

Рассчитываем и выбираем автомат защиты типа ВА

Линии Т1 – ШНН, 1SF, линия без электродвигателей:

 (8.5)

где Sт – номинальная мощность трансформатора, кВА;

Uн.т. – номинальное напряжение трансформатора, кВ;

Iт – номинальный ток трансформатора, А;

Iт=578 А,

Iна≥ Iнр,

Iнр> Iт=578 А (8.6)

где Iна – номинальный ток автомата, А;

Iнр – номинальный ток расцепителя, А.

Выбираем ВА 52-39 [1, с.185]:


Uна=380 В,

Iна=530 А,

Iнр=630 А,

Iу(н)=1,25 Iнр,

Iу(кз)=10 Iнр,

Iоткл=40 кА,

где Iу(н) – номинальный ударный ток, А;

Iу(кз) – ударный ток короткого замыкания, А;

Iоткл – ток отключения, А.

Линия ШНН - ШМА, 1SF, линия с группой ЭД:

Iм=458,3 А,

Iна≥ Iнр,

Iнр≥1,1 Iм,

Iнр=504,1 А.

Выбирается ВА 52-39:

Uна=380 В,

Iна=630 А,

Iнр=530 А,

Iу(н)=1,25 Iнр,

Iу(кз)=10 Iнр,

Iоткл=40 кА.

Определяется ток отсечки:

Iо=1,25 Iпи,

где Iо – ток отсечки, А;

Iпи – пиковый ток, А;

К0=1,2→К0=3,

где К0 – кратность отсечки.

Линия ШМА – вентилятор, 2SF, линия с одним ЭД:

 (8.7)

где Iд – длительный ток в линии, А;

η – коэффициент полезного действия, %.

Iнр=11,9 А.

Выбираем ВА 51-25:

Uна=380 В,

Iна=25 А,

Iнр=12,5 А,

Iу(н)=1,35 А,

Iу(кз)=7 Iнр,

Iоткл=2,5 кА,

I0≥1,2 Iп=74,1 А,

Принимается К0=7.

Аналогично рассчитываются автоматы для всех электроприёмников, данные заносятся в таблицу 8.

8. Релейная защита

Релейная защита называется совокупность специальных устройств, контролирующих состояние всех элементов системы электроснабжения и реагирующих на возникновения повреждения или ненормальный режим работы системы.

При повреждениях релейная защита выявляет повреждённый участок и отключает его, воздействуя на коммутационные аппараты. При ненормальных режимах, не представляющих непосредственной опасности элементам системы, релейная защита работает на сигнал. Выполняя упомянутые функции, она является основным видом автоматики, обеспечивающим надежность системы электроснабжения.

Рассмотрим основные требования, предъявляемые к релейной защите:

Селективность

Селективность или избирательность, защиты – это её способность отключать при КЗ только поврежденный участок.

Быстродействие

Повреждение должно быть отключено с наибольшей быстротой, что уменьшает воздействие аварийного тока на оборудование, повышает устойчивость параллельной работы генераторов электростанций и системы. Последнее условие наиболее важно, поскольку Правилами устройства электроустановок (ПУЭ) установлено, что если остаточное напряжение меньше 0,6 номинального, то для сохранения устойчивости надо как можно быстрее отключить повреждение. Полное время отключения (tоткл) слагается из времени работы защиты (tз) и времени работы выключателя (tв); т. е.

tоткл=tз+tв.

Самые распространенные выключатели обладают временем действия 0,15…0,16 с. В современных энергосистемах требуется весьма малое время отключения. В целях упрощения допускается применение простых быстродействующих защит, не обеспечивающих селективности, с последующим восстановлением схемы электроснабжения устройствами автоматики.

Чувствительность

Чувствительность защиты характеризует её способность реагировать на повреждения в защищаемой зоне в режиме работы системы, при котором ток повреждения минимален.

Резервирование весьма важно при построении схем защиты. Если по принципу действия защита не работает за пределами первого участка, она резервируется другими защитами. Каждая защита должна реагировать на повреждения как при металлическом КЗ, так и при замыкании через дугу.

Надёжность

Надёжность должна быть такой, чтобы обеспечить безотказность работы при КЗ в защищаемой зоне и её бездействия при режимах, когда защита не должна работать. В настоящее время используют релейную защиту. [4, с. 285]


9. Защитное заземление

9.1 Заземлением называется преднамеренное соединение частей электроустановки с землёй с помощью заземляющего устройства, состоящего из заземлителя и заземляющих защитных проводников.

Заземлителями называется металлический проводник или группа проводников, находящихся в грунте, а заземляющими защитными проводниками – металлические проводники, соединяющие заземляемые части электроустановок с заземлителем.

Различают три вида заземлений:

1.  Защитное, гарантирующее безопасность обслуживания электроустановок;

2.  Рабочее, обеспечивающее нормальную работу электроустановок в выбранных режимах;

3.  Грозозащитное, обеспечивающее защиту сооружений от атмосферных явлений. [7, с. 317]

9.2 Расчёт заземляющего устройства

С целью, повышения безопасности обслуживания электроустановок и для защиты людей от поражения электрическим током при повреждении

изоляции используют заземляющее устройство.

Заземление какой-либо части электроустановки – преднамеренное соединение её с заземляющим устройством с целью сохранения в ней низкого потенциала и обеспечение нормальной работы системы или её элементов в выбранном режиме.

Исходные данные:

Климатическая зона – I; [1, с. 90]

Грунт – суглинок;

Зимой – (-18ºС);

Летом – (+18ºС);

Электроды - вертикальный, стальной уголок 50х50х5;

Длина - L=2,5 м;

Горизонтальный – полоса 40х4 мм.

Заземляющий контур будем выполнять по периметру цеха на расстоянии 1 метр от фундамента во внешнею сторону.

Электроды заземляем на 0,7 метра от поверхности земли.

Зададимся расстоянием между соседними вертикальными электродами α=5 м.

Определяем расчетное сопротивление одного вертикального электрода:

rв=0,3 ∙ ρ ∙ Ксез. в., (10.1)

где ρ – удельное сопротивление грунта, Ом ∙м;

Ксез. в. – коэффициент сезонности вертикального;

rв=0,3∙100∙1,9=57 Ом.

В соответствие с ПЭУ требуется сопротивление заземляющего устройства:

Rз.у.≤4 Ом , (10.2)

Определяется количество вертикальных электродов:

·  без учета экранирования (расчетное)

, (10.3)

где rв – расчетное сопротивление одного вертикального электрода, Ом;

Rз.у – сопротивление заземляющего устройства, Ом;

N/в.р – количество электродов без учета экранирования, шт;

 шт. электродов. Принимаем N/в.р.=15;

·  с учетом экранирования

, (10.4)

где Nв.р. – количество электродов с учетом экранирования, шт;

N/в.р - количество электродов без учета экранирования, шт;

ηв. – коэффициент использования электрода;

 шт. электродов.

Принимаем Nв.р.=22.

Размещается ЗУ на плане рисунок 3 и уточняются расстояния, наносятся на план.

Так как контурное ЗУ закладывается на расстоянии не менее 1м.

Определим длину полосы, соединяющей контур из вертикальных электродов:

Lп=(А+2)∙2+(В+2)∙2, (10.5)

где Lп – длина полосы соединяющей контур из вертикальных электродов, м;

А – длина объекта, м;

В – ширина объекта, м;

Lп=(50+2)∙2+(32+2)∙2=172 м.

Определяем сопротивление горизонтального электрода (полосы):

, (10.6)

где Rг. – сопротивление горизонтального электрода, Ом;

Lп – длина полосы, м;

ρ – эквивалентное удельное сопротивление, Ом∙м;

ηг. – коэффициент использования электрода;

t – глубина заложения, м;

b – ширина полосы, м;

Ксез.г - коэффициент сезонности;

Определяем уточненное сопротивление вертикальных электродов:

 (10.7)

где Rв - сопротивление вертикальных электродов, Ом;

Nв – количество вертикальных электродов с учетом экранирования. шт;

ηв. – коэффициент использования электрода;

rв – расчетное сопротивление одного вертикального электрода, Ом;

 Ом.

Определяем фактическое сопротивление ЗУ:

 (10.8)

где Rз.у - фактическое сопротивление ЗУ, Ом;

Rв - сопротивление вертикальных электрода, Ом;

Rг. – сопротивление горизонтального электрода, Ом;

 Ом.

Rз.у.фак.(3,5)< Rз.у (10.9)

Вывод: Фактическое сопротивление ЗУ меньше или равно нормируемого, следовательно, заземляющее устройство эффективно.



Информация о работе «Электроснабжение электрооборудование ремонтно-механического цеха»
Раздел: Физика
Количество знаков с пробелами: 97941
Количество таблиц: 14
Количество изображений: 7

Похожие работы

Скачать
52900
15
4

... Компрессорная ВО ПО ЭО Эстакада к главному корпусу ВБ ПБ ЭБ Склад формовочных изделий ВБ ПБ ЭБ Склад ВБ ПБ ЭБ Склад готовых изделий ВБ ПБ ПО Главный магазин ВБ ПБ ЭБ Ремонтно-механический цех ВБ ПБ ПО Лесосушилка ВБ ПО ЭБ Навес для склада модельных комплектов ВБ ПБ ЭБ Склад моделей ВБ ПБ ЭБ Пристройка к складу модельных комплектов ВБ ПБ ЭБ Станция ...

Скачать
74527
19
3

... цехов и графически, в масштабе, отобразить мощность, потребляемую каждым цехом, в соотношении с мощностью, затрачиваемой на освещение этого цеха. Расчет проведем для ремонтно-механического цеха, а далее по аналогии по [3] и результаты занесем в табл. 6.1. Определим радиус окружности, отражающей мощность цеха с учетом освещения: (4,1) где Рр1 – расчетная мощность ...

Скачать
10759
1
0

... 2 токарно-центровой станок 2 14+1+0,125 3 токарно-центровой станок 4 10+1+0,125 Раздел 1. Исходные данные для проектирования. Характеристика объекта. Тема проекта- электроснабжение ремонтно-механического цеха. Цех выполнен из кирпича, стены оштукатурены, побелены, потолок перекрыт пустотелыми плитами, пол бетонный, имеются двери, окна одностворчатые, грузоподъемники и грузоподъемные ...

Скачать
124039
16
9

... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...

0 комментариев


Наверх