2. Реакторы

Реакторы служат для ограничения токов КЗ в мощных электроустановках, а также позволяют поддерживать на шинах определенный уровень напряжения при повреждениях за реакторами.

Основная область применения реакторов — электрические сети напряжением 6—10 кВ. Иногда токоограничивающие реакторы используются в установках 35 кВ и выше, а также при напряжении ниже 1000 В.

Реактор представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Схемы включения реакторов представлены на рис. 3.48.

Для мощных и ответственных линий может применяться индивидуальное реактирование (рис. 1.3, а). Когда через реактор питается группа линий (например, в системе собственных нужд), его называют групповым (рис. 1.3, 6). Реактор, включаемый между секциями распределительных устройств, называют секционным реактором (рис. 1.3, в).

 

Рис. 1.3. Схемы включения реакторов: а – индивидуальное реактирование; б – групповой реактор;

в – секционный реактор

Основным параметром реактора является его индуктивное сопротивление

xр = ωL, Ом. В некоторых каталогах приводится

xр% = (xр√3Iном ⁄ Uном)×100

где Iном — номинальный ток реактора, А; Uном — номинальное напряжение реактора, В.

Поддержание более высокого уровня остаточного напряжения благоприятно сказывается на потребителях электроэнергии, питающихся от того же источника, что и поврежденная цепь. С учетом этого в режиме КЗ целесообразно иметь возможно большее значение индуктивного сопротивления хр.

Однако по условиям работы электроустановки в нормальном режиме чрезмерно увеличивать сопротивление реактора нельзя из-за одновременного увеличения потери напряжения в реакторе при протекании рабочего пока. Особенно это заметно при использовании реакторов в качестве групповых и индивидуальных. Схемы реактированной линии и диаграммы, характеризующие распределения напряжений в нормальном режиме работы, приведены на рис. 3.50. На векторной диаграмме изображены: 1 – фазное напряжение перед реактором, р – фазное напряжение после реактора и  – ток, проходящий по цепи.

 

 

Рис. 1.4. Ограничение тока КЗ и поддержание напряжения на шинах при помощи реакторов: напряжение на шинах при отсутствии (а) и наличии (б) реактора

 Угол φ соответствует сдвигу фаз между напряжением после реактора и током. Угол Ψ между векторами 1 и p представляет собой дополнительный сдвиг фаз, вызванный индуктивным сопротивлением реактора. Если не учитывать активное сопротивление реактора, отрезок АС предмет собой падение напряжения в индуктивном сопротивлении реактора.

Рис1.5. Вариант схемы безынерционного токоограничивающего устройства

Рис 1.6. Нормальный режим работы цепи с реактором: а – схема цепи; б – диаграмма; в – векторная диаграмма

 Рис.1.7. Фаза реактора серии РБ: 1 – обмотка реактора; 2 – бетонные колонны; 3 – опорные изоляторы


Алгебраическая разность напряжений до реактора и после него, т.е. отрезок AB, соответствует потере напряжения в реакторе. Опустив из точки C перпендикуляр на вектор ОВ и пренебрегая незначительным отрезком ВВ1, можно считать потерей напряжения отрезок АВ1. из треугольника АСВ1 нетрудно вывести приближенное выражение для определения потери напряжения в реакторе. Потеря напряжения в реакторе при протекании тока I и заданном значении cos φ определяется из выражения

∆Up%=xp(√3Isin φ ⁄ Uном)100

где Uном - номинальное напряжение установки, где используется реактор.

Допустимая потеря напряжения в реакторе обычно не превышает 1,5 – 2%.

Значительная потеря напряжения в нормальном режиме работы цепи не позволяет устанавливать индивидуальные и групповые реакторы большого сопротивления. Поэтому для случаев, когда требуются значительные ограничения тока КЗ, разрабатывают специальные более сложные устройства, так называемые БТУ – безынерционные токоограничивающие устройства.

На рис. 1.5 приведена схема простейшего БТУ, в состав которого входят: реактор с большим индуктивным сопротивлением, емкость, настроенная в резонанс с реактором так, чтобы результирующее сопротивление БТУ в нормальном режиме приближалось к минимально возможному. Параллельно емкости включена индуктивность в нормальном режиме с ненасыщенным ферромагнитным сердечником. Индуктивность в нормальном режиме имеет большое сопротивление, и ток через нее мал. При КЗ ток через емкость возрастает, увеличивается падение напряжения на ней, а следовательно, и напряжение на индуктивности. Последняя переходит в режим насыщения сердечника, резко уменьшает свое сопротивление и закорачивает емкость. Ток КЗ ограничивается нескомпенсированным в данном случае реактором. В стадии разработки находятся БТУ различных типов.

Ограничений по потере напряжения в нормальном режиме работы нет в случае секционного реактора, поэтому его сопротивление может быть взято существенно большим, чем в случае индивидуального или группового реактора. На случай режимов, отличных от нормального, может быть применено временное шунтирование реактора.

В настоящее время наибольшее распространение получили бетонные реакторы с алюминиевой обмоткой марки РБ.

Алюминиевые проводники обмотки реакторов покрываются несколькими слоями кабельной бумаги и хлопчатобумажной оплеткой. Обмотка наматывается на специальный каркас, а затем в определенных местах заливается бетоном. Бетон образует колонны, которые закрепляют витки обмотки, предотвращая их смещение под действием собственной массы и электродинамических усилий при протекании токов КЗ. Изоляция реактора от заземленных конструкций, а при вертикальной установке и от соседних фаз осуществляется при помощи опорных фарфоровых изоляторов (рис. 1.7).

Бетонные реакторы выпускаются отечественной промышленностью на номинальные токи до 4000 A и изготавливаются для вертикальной, горизонтальной и ступенчатой установки (рис. 1.8).

В обмотках реактора при протекании по ним тока имеют место потери активной мощности, составляющие обычно 0,1 – 0,2% проходной мощности. При номинальном токе более 1000 A эти потери настолько значительны, что требуется выполнять искусственное охлаждение реактора (вентиляция камер).


Рис.1.8. Способы монтажа реакторов: а – вертикальный монтаж; б – ступенчатый; в – горизонтальная установка фаз

 


Информация о работе «Методы ограничения токов короткого замыкания»
Раздел: Физика
Количество знаков с пробелами: 20998
Количество таблиц: 1
Количество изображений: 8

Похожие работы

Скачать
13616
8
3

... в соответствии c ПУЭ. Условия возгорания электропроводки Возникает вопрос, может ли при выполнении вышеуказанных и других требований ПУЭ произойти возгорание электропроводки при коротком замыкании (КЗ)? Считается, что возгорание электропроводки происходит при достижении проводником определенной температуры, зависящей от типа изоляции кабеля [2]. Так, для кабелей с поливинилхлоридной изоляцией, ...

Скачать
173046
41
10

... меры к его понижению (забивка дополнительных электродов и т.д.). Глава 7. РАСЧЁТ ПОКАЗАТЕЛЕЙ ЭКОНОМИЧСЕКОЙ ЭФФЕКТИВНОСТИ ПРОЕКТА В данной главе рассмотрим вопросы капиталовложений при реконструкции подстанции, расчет эксплуатационных затрат при проведении текущих ремонтов и технических обслуживаний, определение затрат на потреблённую электроэнергию, расчет экономических показателей при ...

Скачать
342209
3
154

... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...

Скачать
116226
28
14

... 115537,893 Итого - - 1050310,49 Годовой эффект совокупных затрат определяется по формуле, р.: Срок окупаемости срок определяется по формуле (2.9) Коэффициент эффективности определяется по формуле (2.10) Применение цифровой защиты фидеров контактной сети постоянного тока ЦЗАФ-3,3 выгодно, так как эффективность от внедрения данной защиты составляет 2,334 и окупится менее чем за ...

0 комментариев


Наверх