5. Казнь врасплох

Неизвестно, кому первому пришла в голову идея парадокса. Согласно У.В. Куайну, логику из Гарвардского университета, автору одной из упоминавшихся выше статей, впервые об этом парадоксе заговорили в начале сороковых годов нашего века, нередко формулируя его в виде головоломки о человеке, приговоренном к смертной казни через повешение. Осужденного бросили в тюрьму в субботу. – Тебя повесят в полдень, – сказал ему судья, – в один из семи дней на следующей неделе. Но в какой именно день это должно произойти, ты узнаешь лишь утром в день казни. Судья славился тем, что всегда держал свое слово. Осужденный вернулся в камеру в сопровождении адвоката. Как только их оставили вдвоем, защитник удовлетворенно ухмыльнулся.

– Неужели не понятно? – воскликнул он. – Ведь приговор судьи нельзя привести в исполнение!

– Как? Ничего не понимаю, – пробормотал узник.

– Сейчас объясню. Очевидно, что в следующую субботу тебя не могут повесить: суббота – последний день недели, и в пятницу днем ты бы уже знал наверняка, что тебя повесят в субботу. Таким образом, о дне казни тебе бы стало известно до официального уведомления в субботу утром, следовательно, приказ судьи был бы нарушен.

– Верно, – согласился заключенный.

– Итак, суббота, безусловно, отпадает, – продолжал адвокат, – поэтому пятница остается последним днем, когда тебя могут повесить. Однако и в пятницу повесить тебя нельзя, ибо после четверга осталось бы всего два дня – пятница и суббота. Поскольку суббота не может быть днем казни, повесить тебя должны лишь в пятницу. Но раз тебе об этом станет известно еще в четверг, то приказ судьи опять будет нарушен. Следовательно, пятница тоже отпадает. Итак, последний день, когда тебя еще могли бы казнить, это четверг. Однако четверг тоже не годится, потому что, оставшись в среду живым, ты сразу поймешь, что казнь должна состояться в четверг.

– Все понятно! – воскликнул заключенный, воспрянув духом. – Точно так же я могу исключить среду, вторник и понедельник. Остается только завтрашний день. Но завтра меня наверняка не повесят, потому, что я знаю об этом уже сегодня!

Короче говоря, приговор внутренне противоречив. С одной стороны, в двух утверждениях, из которых он состоят, нет ничего логически противоречивого, а с другой – привести его в исполнение, оказывается, невозможно.

Безупречными логическими рассуждениями осужденного, казалось бы, убедили в том, что, не нарушив приговора, казнь совершить невозможно. И вдруг, к немалому удивлению осужденного, в четверг утром в камеру является палач. Осужденный, конечно, этого не ждал, но самое удивительное, что приговор оказался совершенно точным – его можно привести в исполнение в полном соответствии с формулировкой. «Мне кажется, – пишет Скривен, – что именно грубое вторжение внешнего мира, разрушающее тонкие логические построения, придает парадоксу особую пикантность. Логик с трогательным постоянством произносит заклинания, которые в прошлом приводили к нужному результату, но чудовище-реальность на этот раз отказывается повиноваться и продолжает следовать своим путем».

Проследим еще раз решение парадокса, придав ему на этот раз форму парадокса о человеке, приговоренном к повешению. Теперь мы знаем, что судья сформулировал приговор правильно, а узник рассуждал неверно. Ошибочным являлся самый первый шаг в его рассуждении, когда он полагал, будто его не могут повесить в последний день недели. На самом же деле у осужденного нет оснований делать какие бы то ни было заключения о своей судьбе даже в вечер накануне казни (ситуация здесь та же, что и в парадоксе с яйцом, когда остается закрытой одна последняя коробка). Эта мысль играет решающую роль в работе известного логика Куайна, написанной им в 1953 году.

Куайн сообщает, как бы он рассуждал на месте узника. Следует различать четыре случая: первый – меня повесят завтра днем, и я знаю об этом уже сейчас (но на самом деле я этого не знаю); второй – меня не повесят завтра днем, и я знаю об этом уже сейчас (но на самом деле я этого не знаю); третий – меня не повесят завтра днем, но сейчас я об этом не знаю и, наконец, четвертый – меня повесят завтра днем, но сейчас я об этом не знаю.

Два последних случая являются возможными, последний из них означал бы приведение приговора в исполнение. В такой ситуации незачем загадывать вперед и ловить судью на противоречиях. Остается лишь ждать, надеясь на лучшее.

Шотландский математик Томас Г. О'Бейрн в статье с несколько парадоксальным названием «Может ли неожиданное никогда не произойти?» (The New Scientist, May 25, 1961.) дает великолепный анализ обсуждаемого парадокса. Как показывает О'Бейрн, ключ к решению парадокса лежит в осознании одного довольно простого обстоятельства: один человек располагает сведениями, которые позволяют ему считать правильным предсказание какого-то события в будущем, другой ничего не может сказать о правильности предсказания до тех пор, пока это событие не произойдет.

То же самое можно сказать о нашем парадоксе, И судья, и человек, кладущий яйцо в одну из коробок, и наш приятель с тринадцатью картами – каждый из них знает, что его предсказание должно исполниться. Однако их слова с предсказанием не могут служить основанием для цепочки рассуждении, приводящей, в конечном счете, к опровержению самого предсказания. Именно здесь кроется то бесконечное блуждание по кругу, которое, подобно фразе на лицевой стороне карточки из парадокса Журдена, обрекает на неудачу все попытки доказать ошибочность предсказания.

Суть нашего парадокса станет особенно ясной, если воспользоваться одной идеей, высказанной в статье Скривена. Предположим, что муж говорит своей жене:

Я сделаю тебе ко дню рождения сюрприз. Ты ни за что не догадаешься, какой подарок тебя ожидает. Это тот самый золотой браслет, который ты видела на прошлой неделе в витрине ювелирного магазина».

Что же теперь делать его несчастной жене? С одной стороны, она знает, что муж никогда не лжет и всегда выполняет свои обещания. Однако если он все же подарит ей золотой браслет, то это уже не будет сюрпризом и тогда обещание окажется невыполненным, то есть муж сказал ей неправду. А если это так, то к каким выводам может она прийти, рассуждая логически? Не исключено, что муж сдержит слово и подарит ей браслет, нарушив обещание удивить ее неожиданным подарком. С другой стороны, он может сдержать свое слово, что подарок будет неожиданным, но нарушить второе обещание и вместо золотого браслета подарит ей, например, новый пылесос. Поскольку муж своим утверждением сам себе противоречит, у нее нет никаких разумных оснований предпочесть одну из этих возможностей другой, следовательно, у нее нет оснований надеяться на золотой браслет. Нетрудно догадаться, что будет дальше: когда. в день рождения муж преподнесет ей браслет, подарок мужа окажется для нее приятным сюрпризом, поскольку его нельзя предсказать заранее никакими логическими рассуждениями. Муж все время знал, что может сдержать слово и сдержит его. Жена же этого не знала до тех пор, пока обещанное событие не произошло. Утверждение мужа, которое еще вчера казалось ей чепухой и ввергло ее в запутаннейший клубок логических противоречий, сегодня вдруг стало абсолютно правильным и непротиворечивым благодаря появлению долгожданного золотого браслета.



Информация о работе «Парадоксы логики»
Раздел: Философия
Количество знаков с пробелами: 47113
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
36475
1
0

... в лице читателя или слушателя, а это возможно только тогда, когда речь логически организована. 4. Основные формально-логические законы   4.1 Общие замечания Хорошо известно, что логика как наука имеет длительную и богатую историю. В лице логики человечество вырабатывало науку о мышлении из поколения в поколение, и на этом пути оно достигло высоких результатов. Как и каждая зрелая наука ...

Скачать
69041
0
0

... и парадоксы, существующие в других науках (физические, математические). Несмотря на явное упрощение, именно такое разделение представляется наиболее подходящим и оправданным целями данной работы. 2. Парадоксы в науке   Наука – это сложное явление общественной жизни; её основным назначением является получение объективных знаний о мире. Наука – это многоаспектное явление. Её можно рассматривать ...

Скачать
14402
0
0

... и математических существуют и космологические парадоксы. К ним можно отнести антиномии диалектического разума И.Канта (определенные, правда, самим автором их как только гносеологические). Известны и современные космологические парадоксы. Они косвенно связаны с логическими и математическими. 1. Экспансионный парадокс (Э.Хаббл). Принимая идею бесконечной протяженности, приходим к противоречию с ...

Скачать
41671
0
0

... , что ((Я=Л)=Л)=не(Я=Л). А так как (Я=Л)=неЯ, то ((Я=Л)=Л)=ненеЯ=Я. Это и есть адекватная высказывательная форма: Я=((Я=Л)=Л). Соответственно высказывание, полностью и без регресса в бесконечность описывающее парадокс "Лжец", имеет вид (Я=((Я=Л)=Л)). Формально и без нарушения закона тождества мы должны рассматривать высказывание (Я1=(Я=Л)), а не (Я=(Я=Л)). Самоприменимость же высказывания (Я=Л) ...

0 комментариев


Наверх