3. Понятие простых и сложных процентов

Ссудо-заемные операции, составляющие основу коммерческих вычислений, имеют давнюю историю. Именно в этих операциях и проявляется прежде всего необходимость учета временной ценности денег. Несмотря на то что в основе расчетов при анализе эффективности ссудо-заемных операций заложены простейшие, на первый взгляд, схемы начисления процентов, эти расчеты многообразны из-за вариабельности условий финансовых контрактов в отношении частоты и способов начисления, а также вариантов предоставления и погашения ссуд.

Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. При этом выделяется некоторый основной интервал времени, который называется базовым. Поскольку стандартным временным интервалом в финансовых операциях является один год, наиболее распространен вариант, когда этот год берется в качестве базового интервала и процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления, т.е. начисления процентов за фиксированные в договоре интервалы времени:

• схема простых процентов,

• схема сложных процентов.

Схема простых процентов предполагает неизменность величины, с которой происходит начисление. Пусть исходный инвестируемый капитал равен Р; требуемая доходность — r (в десятичных дробях). Считается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину Рr. Таким образом, размер инвестированного капитала F через п лет будет равен

 

F=Р(1+nr), (5)

т.е. проценты начисляются на одну и ту же величину капитала в течение всего срока.

Простым процентом называется сумма, которая начисляется при определении первоначальной (настоящей) стоимости вклада в конце одного периода платежа по условиям инвестирования средств (месяц, квартал и т.п.).

Выражение (5) называется формулой наращения по простым процентам, или формулой наращения простыми процентами, а множитель (1+пr)—множителем наращения, или коэффициентом наращения простых процентов. Очевидно, множитель наращения равен индексу роста капитала Р за п лет. Легко видеть, что приращение капитала

 

I=Рnr (6)

пропорционально сроку ссуды и ставке процента, т.е., в частности, можно сделать вывод, что доход инвестора растет линейно вместе с п. Величина дохода I, называется процентом, процентным платежом или суммой процента за обусловленный период инвестирования в целом.

На практике процентная ставка г может зависеть от величины исходного капитала Р: с увеличением капитала Р увеличивается и устанавливаемая ставка г. Например, если инвестируется капитал до 20 тыс. руб., то устанавливается одна ставка процента, если более 20 тыс. руб. — то другая (превышающая предыдущую).

Отметим, что если ставка г дана в процентах, то при использовании формулы (5) ставку нужно выразить в десятичных дробях.

С этих позиций наращение по простым процентам в случае, когда продолжительность финансовой операции п не равна целому числу лет (например, меньше года), определяется по формуле

 

F=Р (1+r) (7)

 

где t — продолжительность финансовой операции в днях; '

Т — количество дней в году.

Сравнивая (5) и (7), можно сделать вывод, что формула (5) носит общий характер, поскольку в качестве п можно рассматривать любое положительное число, необязательно целое. Таким образом, (5) представляет собой зависимость наращенной суммы от времени, знание которой, в частности, позволяет на практике установить правила досрочного расторжения договора.

Сложным процентом называется сумма дохода, которая образуется в результате инвестирования при условии, что сумма начисленных простых процентов не выплачивается после каждого периода, а присоединяется к сумме основного вклада и в следующем платежном периоде сама приносит доход.

Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала Р (как для простых процентов), а с общей суммы, включающей также и ранее начисленные и невостребованные инвестором проценты. В этом случае происходит. капитализация процентов, т.е. присоединение начисленные процентов к их базе, и, следовательно, база, с которой начисляются проценты, все время возрастает. Таким образом, размер инвестированного капитала будет равен к концу n-го года:

 

F = Р(1 + г). (8)

Равенство (8) называется формулой наращения по сложным процентам или формулой наращения сложными процентами; множитель (1 + г)—множителем наращения сложных процентов или мультиплицирующим множителем; 1+г— коэффициентом наращения.

В отличие от схемы простых процентов в данном случае приращение капитала


I=F- Р (9)

не пропорционально ни сроку ссуды, ни ставке процента (естественно, если п  1).

Т.о., в случае ежегодного начисления %-ов для лица, предоставляющего кредит:

-  более выгодной яв-ся схема простого %-та, если срок менее года (%-ты начисляются однократно в конце периода);

-  более выгодной яв-ся схема сложного %-та, если срок ссуды превышает год (%-ты начисляются ежегодно);

-  обе схемы дают одинаковые результаты при продолжительности периода 1 год и однократном начислении %-ов.


Библиографический список

1. Ковалев В.В.Методы оценки инвестиционных проектов.-М: Финансы и статистика, 2009.

2. Ковалев В.В., Уланова В.А. Курс финансовых вычислений.-М: Финансы и статистика, 2007.

3. Ильенкова С.Д. и др. Инновационный менеджмент.-М: Банки и биржи, 2008.

4. Ендовицкий Д.А. Инвестиционный анализ в реальном секторе экономики.-М: Финансы и статистика, 2008.

5. Савицкая Г.В. Анализ хозяйственной деятельности предприятия.-Минск: Новое знание, 2008 и другие переиздания.

6. Харин А.А. Управление инновациями: в 3-х кн.-М: Высш шк., 2009.

7.Гиляровская Л.Т. Экономический анализ.-М: ЮНИТИ, 2007.

8. Крылов Э.И. Анализ эффективности инвестиционной и иннновационной деятельности предприятия.-М:Финансы и статистика, 2008.

9 Станиславчик Е.Н. Инвестиционный анализ профессиональных бухгалтеров (курс лекций), 2008.

10 Герасименко Г.П., Маркарьян С.Э. и др. Управленческий, финансовый и инвестиционный анализ: Практикум, 2007.


Информация о работе «Финансовые операции в рыночной экономике»
Раздел: Финансовые науки
Количество знаков с пробелами: 17372
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
67179
0
0

... отчетность; -          статистическая финансовая информация; -          несистемные данные.   3.2 Информационное обеспечение деятельности финансового менеджера   Основой информационного обеспечения системы финансового менеджмента служит любая информация финансового характера: -          бухгалтерская отчетность; -          сообщения финансовых органов; -          информация учреждений ...

Скачать
117176
0
0

... и порядок работы финансовых органов; а также позволяющих обеспечить функционирование и дальнейшее развитие механизма формирования и распределения финансовых результатов на твердой законной основе в условиях перехода к рыночной экономике. Механизм формирования и распределения финансовых результатов можно условно разделить на две части: механизм формирования финансовых результатов и механизм ...

Скачать
43074
0
0

... смысл, означая совокупность денежных средств, находящихся в распоряжении государства (государственный бюджет), образование и использование которой есть главный инструмент финансового регулирования государством рыночной экономики. Хотя размеры государственных доходов постоянно растут, величина государственных расходов растёт ещё быстрее. Эта диспропорция объясняется направлениями государственного ...

Скачать
16652
0
0

... смысл, означая совокупность денежных средств, находящихся в распоряжении государства, образование и использование которой есть главный инструмент финансового регулирования государством рыночной экономики. Основным источником государственных доходов являются налоги, а также предпринимательская деятельность самого государства (доходы от госпредприятий, сдача объектов госсобственности в аренду, ...

0 комментариев


Наверх