Реферат
«Активность клетки и понятие генетика»
1. Авторегуляция химической активности клетки
Любой-клетке, как и всякой живой системе, присуща способность сохранять свой состав и все свои свойства на относительно постоянном уровне. Так, например, содержание АТФ в клетках составляет около 0,04%, и эта величина стойко удерживается, несмотря на то что АТФ постоянно расходуется в клетке в процессе жизнедеятельности. Другой пример: реакция клеточного содержимого слабощелочная, и эта реакция устойчиво удерживается, несмотря на то что в процессе обмена веществ постоянно образуются кислоты и основания. Стойко удерживается на определенном уровне не только химический состав клетки, но и другие ее свойства. Высокую устойчивость живых систем нельзя объяснить свойствами материалов, из которых они построены, так как белки, жиры и углеводы обладают незначительной устойчивостью. Устойчивость живых систем активна, она обусловлена сложными процессами координации и регуляции.
Рассмотрим, например, каким образом поддерживается постоянство содержания АТФ в клетке. Как мы знаем, АТФ расходуется клеткой при осуществлении ею какой-либо деятельности. Синтез же АТФ происходит в результате процессов без кислородного и кислородного расщепления глюкозы. Очевидно, что постоянство содержания АТФ достигается благодаря точному уравновешиванию обоих процессов — расхода АТФ и ее синтеза: как только содержание АТФ в клетке снизится, тотчас же включаются процессы без кислородного и кислородного расщепления глюкозы, в ходе которых АТФ синтезируется и содержание АТФ в клетке повышается. Когда уровень АТФ достигнет нормы, синтез АТФ притормаживается.
Включение и выключение процессов, обеспечивающих поддержание нормального состава клетки, происходит в ней автоматически. Такая регуляция называется саморегуляцией или авторегуляцией.
Основой регуляции деятельности клетки являются процессы информации, т. е. процессы, в которых связь между отдельными звеньями системы осуществляется с помощью сигналов. Сигналом служит изменение, возникающее в каком-нибудь звене системы. В ответ на сигнал запускается процесс, в результате которого возникшее изменение устраняется. Когда нормальное состояние системы восстановлено — это служит новым сигналом для выключения процесса.
Понижение содержания АТФ в клетке представляет сигнал, запускающий процесс синтеза АТФ. Когда концентрация АТФ достигнет нормы — это новый сигнал, приводящий к выключению синтеза АТФ.
Каким же образом работает сигнальная система клетки, как она обеспечивает процессы авторегуляции в ней?
Прием сигналов внутри клетки производится ее ферментами. Ферменты, как и большинство белков, обладают неустойчивой структурой. Под влиянием ряда факторов, в том числе многих химических агентов, структура фермента нарушается и каталитическая активность его утрачивается. Это изменение, как правило, обратимо, т. е. после устранения действующего фактора структура фермента возвращается к норме и его каталитическая функция восстанавливается.
Механизм авторегуляции клетки основан на том, что вещество, содержание которого регулируется, способно к специфическому взаимодействию с порождающим его ферментом. В результате этого взаимодействия структура фермента деформируется и каталитическая активность его утрачивается.
Механизм авторегуляции клетки работает следующим образом. Мы уже знаем, что химические вещества, вырабатываемые в клетке, как правило, возникают в результате нескольких последовательных ферментативных реакций. Вспомните без кислородный и кислородный процессы расщепления глюкозы. Каждый из этих процессов представляет длинный ряд — не менее десятка последовательно протекающих реакций. Вполне очевидно, что для регуляции таких многочленных процессов достаточно выключения какого-либо одного звена. Достаточно выключить хотя бы одну реакцию — и остановится вся линия. Именно этим путем и осуществляется регуляция содержания АТФ в клетке. Пока клетка находится в покое, содержание АТФ в ней около 0,04%. При такой высокой концентрации АТФ она реагирует с одним из ферментов без кислородного процесса расщепления глюкозы. В результате этой реакции все молекулы данного фермента лишены активности и конвейерные линии без кислородного и кислородного процессов бездействуют. Если благодаря какой-либо деятельности клетки концентрация АТФ в ней снижается, тогда структура и функция фермента восстанавливаются и без кислородный и кислородный процессы запускаются. В результате происходит выработка АТФ, концентрация ее увеличивается. Когда она достигнет нормы (0,04%), конвейер без кислородного и кислородного процессов автоматически выключается.
По образцу авторегуляции АТФ происходит авторегуляция содержания и других веществ в клетке.
2. Раздражимость и движение клеток
Раздражимость. На любой организм постоянно действуют разнообразные факторы внешней среды, например: свет, температура, давление, звук, электрический ток, сила тяжести и др. Действие всех внешних факторов-раздражителей вызывает у организма ответные реакции, в основе которых лежит свойство раздражимости клеток. Раздражимостью называют способность организмов, а также клеток отвечать на воздействия внешней среды определенными реакциями.
Раздражимость можно наблюдать у любых клеток и организмов. У простейших, например у амеб, эвглен, инфузорий, реакция на изменение условий среды проявляется в передвижении их по отношению к раздражителю. Такие движения называются таксисами.
Если простейшие движутся по направлению к раздражителю, то такие движения их именуются положительным таксисом; движения же простейших от раздражителя носят название отрицательного таксиса. Те движения, которые возникают в ответ на действие света, получили название фототаксиса. Пример фототаксиса — движение зеленых жгутиконосцев по направлению к источнику освещения: если аквариум, в котором находятся эвглены, одинаково освещен со всех сторон, то эвглены равномерно распределяются по всей толще воды. Если же наиболее сильно осветить лишь какую-либо одну часть аквариума, то эвглены скапливаются именно в этой освещенной части, проявляя положительный фототаксис по отношению к свету.
Движения простейших, вызванные действием химических веществ, именуются хемотаксисами. Хемотаксис можно наблюдать у инфузории туфельки: если в пробирку налить воду с находящимися в ней инфузориями, то через небольшой промежуток времени они все соберутся в верхнем слое воды, богатом кислородом. Инфузориям необходим кислород для дыхания, и они по отношению к нему проявляют положительный хемотаксис. Те движения простейших, которые возникают под влиянием изменения температуры, называются термотаксисом. Термотаксис можно также легко наблюдать у инфузории туфельки. Для этого туфелек вместе с небольшим количеством среды, в которой они находятся, помещают в тонкий стеклянный капилляр, который с одной стороны охлаждается льдом, а с другой подогревается горячей водой до температуры 38—40° С. Туфельки, сначала равномерно распределявшиеся по всей длине капилляра, начинают двигаться от слишком холодных и слишком горячих его участков, проявляя к ним отрицательный термотаксис и собираясь в средней зоне с температурой 24—26° С, которая для них служит оптимальной, т. е. наилучшей для жизни. Именно к этой температуре они обнаруживают отчетливо выраженный положительный термотаксис.
Явление раздражимости хорошо выражено и у клеток растений. Чаще всего у растений встречаются проявления раздражимости в форме медленных двигательных реакций. Такие медленные движения, направленные к раздражителю или от него, называются тропизмами. У растений широко распространены фототропизмы — движения, возникающие в ответ на действие света. Растения тянутся к свету, изгибаются по направлению к нему, и в основе этой реакции лежит свойство раздражимости их клеток.
Иногда же клетки растений быстро реагируют на действие раздражителей. Примером может служить быстрая реакция у растения, известного под названием «стыдливая мимоза». При любом прикосновении к мимозе, при помещении в темноту или в условия повышенной температуры листья ее складываются и как бы увядают. Как только действие раздражителя прекращается, листья мимозы принимают прежнее положение. В основе этой быстрой реакции мимозы лежит также свойство раздражимости ее клеток. Еще пример быстрой реакции растения на действие раздражителя. На болотах, а иногда и по берегам ручьев растет росянка — растение, питающееся насекомыми. Росянка — небольшое растение с розеткой стелющихся листьев, похожих на лопаточки. Поверхность каждого листа покрыта чувствительными волосками красного цвета. Кончик каждого волоска утолщен и покрыт капельками блестящего, как роса, и липкого, как клей, сока. Если на такой лист сядет насекомое, например комар или небольшой жук, то клейкий сок волосков сразу же затрудняет его движения и насекомое оказывается в западне. Волоски листа, задетые насекомым, быстро складываются над пойманной добычей и обильно поливают ее соком. Сок, выделенный секреторными клетками листа, содержит ферменты, под действием которых расщепляются белки. Насекомое переваривается и через несколько часов всасывается. После этого волоски листа поднимаются, и лист снова готов к «охоте».
По сравнению с многоклеточными животными реакции одноклеточных организмов и растений, возникающие в ответ на действие раздражителя, относительно просты: клетки их непосредственно взаимодействуют с внешней средой. У сложноорганизованных многоклеточных животных и у человека нервная система в процессе эволюции стала основным посредником между организмом и окружающей средой. Человек и животные получают информацию об изменениях внешней и внутренней среды посредством рецепторов — особых клеток, обладающих высокой чувствительностью к воздействию разнообразных раздражителей.
У человека 5 видов внешних рецепторов, которые известны вам из курса физиологии (вспомните и назовите их). Имеется и множество внутренних рецепторных клеток. Например, по всему телу рассеяны болевые рецепторные клетки, в стенках крупных кровеносных сосудов находятся чувствительные клетки, реагирующие на изменение концентрации CO2 в крови.
Раздражимость — один из основных признаков жизни. Пока организм жив, он раздражим. С прекращением жизни раздражимость исчезает. Огромное значение раздражимости клеток и организмов заключается в том, что она позволяет всем живым существам находиться в постоянной связи с окружающим миром, дает возможность приспосабливаться к нему. Раздражимость клеток связана в первую очередь с теми большими изменениями, которые происходят в белках, входящих в состав мембран цитоплазмы и ядра каждой клетки. При действии раздражителей, как это стало известно сейчас, происходят изменения в структуре белковых молекул. Способность к изменению структуры в ответ на действие раздражителей — это, по-видимому, одно из первичных элементарных свойств белков, которое возникло в процессе эволюции организмов.
Движение. В теснейшей связи с раздражимостью находится способность клеток и организмов совершать движения. Основу движения составляет сократимость цитоплазмы клеток. Сократимость — одно из основных свойств цитоплазмы живых клеток.
Как правило, растения неподвижно растут на одном месте, и исключение составляют только некоторые одноклеточные водоросли (например, диатомовые), способные к самостоятельному передвижению. Мы уже видели, что на действие таких внешних раздражителей, как свет, растения отвечают движениями листьев и побегов. Кроме того, у растений движения проявляются в росте.
В клетках всех растений постоянно происходит движение цитоплазмы. Эти движения называются токами цитоплазмы. Их можно видеть с помощью микроскопа у водорослей, в клетках листьев традесканции и в других растительных клетках. Токи цитоплазмы имеются также в клетках животных, и их легко наблюдать, например, у таких простейших, как инфузории.
Способность к передвижениям во внешней среде характерна для многих видов бактерий, простейших, для огромного большинства многоклеточных животных. У организмов, способных к передвижениям во внешней среде, различается 4 типа движения клеток: амебоидное, ресничное, жгутиковое и мышечное.
и биологии сейчас нет ничего более настоятельного, нежели тотальная расшифровка нуклеотидного состава ДНК, что это напрямую может решить главные загадки и проблемы генетики и биологии Глава 1. Предмет генетики 1.1. Современные представления о гене Подобно тому, что в физике элементарными единицами вещества являются атомы, в генетике элементарными дискретными единицами наследственности и ...
... При этом программирующим устройством становится сама биосфера. Ведь она определяет особенности, скорость и направление эволюционных преобразований видов, входящих в её состав. 2. Основные положения генетики К настоящему времени установлено, что ген - единица наследственного материала, ответственная за формирование какого-либо элементарного признака, то есть единица наследственной информации ...
... гамет 2. одинаковая жизнеспособность всех типов гамет 3. равновероятное слияние гамет 4. что бы все зиготы обладали одинаковой выживаемостью Основные принципы биометрического анализа. Генетика вообще является наиболее математизированной биологической дисциплиной. Статистический анализ данных, именуемый прикладной статистикой (в биологии за ним укрепилось название биометрия), является ...
... , вызванные динамическими му-тациями.-----------------------T-----------T-------T-----T------T------T----------------------¬ Болезнь, номер по ¦ Ген, лока-¦Триплет¦Норма¦Прему-¦Мута- ¦Литература ¦ МакКьюсику (MIM) ¦ лизация ¦ ¦ ¦тация ¦ция ¦ ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Синдром ломкой X-хро- ¦FMR1, FRAXA¦(CGG)n ...
0 комментариев