Этот файл взят из коллекции Medinfo http://www.doktor.ru/medinfo http://medinfo.home.ml.org E-mail: medinfo@mail.admiral.ru or medreferats@usa.net or pazufu@altern.org FidoNet 2:5030/434 Andrey Novicov Пишем рефераты на заказ - e-mail: medinfo@mail.admiral.ru
В Medinfo для вас самая большая русская коллекция медицинских рефератов, историй болезни, литературы, обучающих программ, тестов.
Заходите на http://www.doktor.ru - Русский медицинский сервер для всех!
ВВЕДЕНИЕ
Если век Х1Х по-праву вошел в историю мировой цивилиза-
ции, как Век Физики, то стремительно завершающемуся веку ХХ,
в котором нам посчастливилось жить, по всей вероятности, уго-
товано место Века Биологии, а может быть и Века Генетики.
Действительно, за неполных 100 лет после вторичного открытия
законов Г. Менделя генетика прошла триумфальный путь от на-
турфилософского понимания законов наследствености и изменчи-
вости, через экспериментальное накопление фактов формальной
генетики к молекулярно-биологическому пониманию сущности ге-
на, его структуры и функции. От теоретических построений о
гене как абстрактной единице наследственности к пониманию его
материальной природы как фрагмента молекулы ДНК, кодирующей
аминокислотную структуру белка, до клонирования индивидуаль-
ных генов, создания подробных генетических карт человека и
животных, идентификации генов, мутации которых сопряжены с
тяжелыми наследственными недугами, разработки методов биотех-
нологии и генной инженерии, позволяющих направленно получать
организмы с заданными наследственными признаками, а также
проводить направленную коррекцию мутантных генов человека, то
есть генотерапию наследственных заболеваний. Молекулярная ге-
нетика значительно углубила наши представления о сущности
жизни, эволюции живой природы, структурно-функциональных ме-
ханизмах регуляции индивидуального развития. Благодаря её
успехам начато решение глобальных проблем человечества, свя-
занных с охраной его генофонда.
Естественно, что возможность манипуляции с индивидуаль-
ными генами человека и животных еще недостаточна для понима-
ния функции всего генома, его организации вцелом, взаимо-
действия его частей в обеспечении всего многообразия механиз-
мов онтогенеза, то есть развития одной клетки до целого орга-
низма. Если добавить к этому, что в геноме любого вида за-
писана не только программа индивидуального развития, но зако-
дирована и вся эволюция вида, то есть его филогенез, стано-
вится понятным насколько логичной и методически своевременной
явилась Международная научная программа "Геном человека". На-
ряду с аналогичными программами для других видов (лаборатор-
ные мыши, нематоды) программа Геном человека, начатая около
10 лет назад, уже к 2 000 году позволит полностью расшифро-
вать первичную структуру ДНК, то есть идентифицировать все
гены человека, их регуляторные элементы. Захватыающая Одиссея
о наследственности, которой и является эта программа, безмер-
но расширит наши представления о структуре и функции генома,
его эволюции, откроет горизонты столь увлекательного, а, воз-
можно, и не менее опасного направленного воздействия человека
на геном растений, животных и, что особенно рискованно, на
свой собственный геном. Важно осознать, что это не завтрешний
день фундаментальной науки, не отдаленные абстракции, но день
сегоднешний. Он уже наступил и стал реальным независимо от
нас, и, если не быть к нему готовым концептуально и методи-
чески, то пройдет помимо нас.
Предлгаемая вашему вниманию книга, действительно,
представляет собой введение в молекулярную генетику
наследственных болезней и рассчитана на достаточно широкую
аудиторию медиков и биологов. Для большинства из уже состояв-
шихся специалистов в этих областях - это реальная возможность
для самообразования, которой, увы, с годами мы так часто пре-
небрегаем, запутавшись в повседневных заботах. Для студентов
биофаков и особенно для студентов-медиков - эта книга вполне
может рассматриваться в качестве учебного пособия по молеку-
лярным основам медицинской генетики. Однако, и для первых и
для вторых, по глубокому убеждению авторов, много лет отдав-
ших внедрению достижений молекулярной биологии в медицинскуюя
практику, книга может служить в качестве справочного руко-
водства по молекулярной генетике человека. Действительно, ни
одна клиническая дисциплина (за исключением, может быть,
службы организации здравоохранения) не мыслима сегодня без
знаний и определенных навыков по молекулярной генетике. Ни
один биолог, занятый вопросами наследственности, изменчи-
вости, онтогенеза или эволюции независимо от конкретного био-
логического объекта, не может игнорировать человека, как од-
ного из пока немногих биологических видов с полностью
расшифрованной структурой генома. Быстро набирающая силы мо-
лекулярная медицина, преподование азов которой все еще явно
недостаточно для будущих врачей, на самом деле представляет
собой принципиально новый качественный уровень в понимании
вопросов этиологии, патогенеза, а, следовательно, и лечения
многих болезней, как наследственной моногенной, так и муль-
тифакториальной природы.
По нашему мнению, не только современный врач и специа-
лист-биолог, но и каждый образованный человек сегодня должен
знать о триумфе Международного Научного Сообщества в выполне-
нии программы Геном человека, в результате которой успешно
расшифровываются все гены человека, каждый из которых, будучи
выделенным из организма и проклонированным может выступать в
качестве лечебного препарата для генотерапии. О том, что уже
сегодня идентифицировано на генетических картах более 5 000
структурных генов и свыше 60 000 пока неизвестных смысловых и
анонимных ДНК последовательностей. О том, что всего за 5 лет
после первых успешных попыток введения чужеродных маркерных
генов в клетки человека in vivo, число уже одобренных для
клинических испытаний программ по генной терапии наследствен-
ных заболеваний достигло более 100! Эти итоги представляются
особенно впечетляющими если учесть, что согласно данным Все-
мирной Организации Здравоохранения около 2,4% всех новорож-
денных на земном шаре страдает теми или иными наследственными
нарушениями; около 40% ранней младенческой смертности и инва-
лидности с детства обусловлены наследственной патологи-
ей. Нельзя не упомянуть о реальных достижениях молекулярной
генетики в расшифровке наследственных факторов таких бичей
человечества как ишемия сердца, атеросклероз, диабет, онколо-
гические и инфекционные заболевания. Адекватно воспринимать
происходящую на наших глазах революцию в биологии и в медици-
не, уметь воспользоваться её заманчивыми плодами и избежать
опасных для человечества соблазнов - вот что необходимо се-
годня и врачам, и биологам, и представителям других смежных
специальностей, и просто образованному человеку.
Именно эта цель, эта сверхзадача, поставлена перед дан-
ной монографией, восполняющей, по мнению авторов, наметив-
шийся в отечественной научной литературе пробел в области мо-
лекулярных аспектов медицинской генетики и генетики человека.
Отдельные обзоры, монографии (Шишкин, Калинин, 1993), пере-
водная литература по молекулярной биологии и даже обстоятель-
ные сводки, подводящие ежегодные итоги работ по программе
"Геном человека" достаточно фрагментарны и касаются лишь от-
дельных аспектов проблем генодиагностики и генотера-
пии. Рассчитаны преимущественно на специалистов по молекуляр-
ной биологии. Задача данной монографии не только осветить
современное положение дел в молекулярной диагностике и лече-
нии наследственных болезней методами генной терапии, но,
главным образом, подготовить читателей, прежде всего врачей и
биологов, к пониманию и восприятию этой методически и концеп-
туально достаточно сложной обасти генетики.
Для достижения поставленной цели нам представлялось ло-
гичным начать изложение материала с описания структуры и сов-
ременных методов анализа ДНК, с общих представлений о её кло-
нировании, секвенировании, геномных библитеках (Глава I).
Глава II полностью посвящена структуре генома человека, новой
трактовке понятия "ген", генным семействам, вариабильным
структурам генома. Генетические карты, принципы их построе-
ния, функциональное и позиционное картирование, молекулярные
маркеры, современные достижения в разработке физических и
хромосомных карт человека и в картировании генов, ответствен-
ных за наследственные заболевания рассмотрены в Главе III.
Глава IV целиком посвящена описанию молекулярных методов де-
текции как уже известных мутационных изменений в структурных
генах, так и методов сканирования предполагаемых мутаций оп-
ределенных генов. Описание прямых методов идентификации му-
таций дополнены косвенными методами, основанными на молеку-
лярном маркировании мутантных генов. Все эти методы, как
прямые, так и косвенные, составляют основу молекулярной ди-
агностики моногенных наследственных болезней, широко исполь-
зуются в генетике человека при построении генетических карт,
исследовании проблем филогенеза, в популяционной гентике и в
геномной дактилоскопии, то есть для идентификации личности.
Подробному анализу внутренних (эндогенных) факторов мутаге-
неза, а также принципам популяционного анализа мутаций
посвящена Главе Y. Основные подходы, используемые при изуче-
нии экспрессии генов в модельных бесклеточных системах, на
уровне отдельных клеток и целых организмов приведены в Главе
VI. Принципы молекулярной диагностики наследственных болез-
ней и, в частности, пренатальной диагностики, а также осо-
бенности выявления гетерозиготного носительства в семьях
выского риска, изложены в Главе VII. Небольшая по размеру,
но важная также и для понимания принципов генной терапии
Глава VIII касается искусственного создания генетических мо-
делей наследственных заболеваний, в частности на базе
трансгенных живоных. Описаны используемые при этом методы
направленного переноса чужеродных генов в эукариотические
системы. В Главе IX изложены основы генотерапии наследствен-
ных заболеваний, рассмотрены методы доставки чужеродной ДНК
в клетки человека in vitro и in vivo, преимущества и не-
достатки существующих векторных систем (физических, хими-
ческих и биологических), их конструирование, преспективы
создания "идеальных" векторных систем. Кратко рассмотрены
итоги уже проведенных испытаний по генотерапии тех заболева-
ний, для которых Программы клинических испытаний уже одобре-
ны или находятся на стадии эксперимента. В заключительной
главе (Глава X) мы посчитали целесообразным подвести некото-
рые итоги и более подробно рассмотреть молекулярную диаг-
ностику трех групп наследственных заболеваний: (1) достаточ-
но полно изученную группу лизосомных болезней накопления;
(2) болезни экспансии (преимущественно нейродегенеративные
заболевания), вызываемые совершенно новым ранее неизвестным
типом так называемых "динамических" мутаций и (3) наиболее
частые, социально значимые наследственные заболевания, по
пренатальной диагностике которых молекулярными методами уже
накоплен достаточно большой опыт в нашей лаборатории и в
других медико-генетических центрах России.
Итак, предлагаемая монография рассчитана на достаточно
широкий круг читателей, но, прежде всего, на медиков и биоло-
гов, а также специалистов смежных профессий. Нам хотелось бы
думать, что книга будет особенно полезной для студентов меди-
цинских институтов и академий, врачей курсов повышения квали-
фикации, сотрудников медико-генетических консультаций и цент-
ров, а также для студетнов-биологов, многие из которых, как
показывает наш опыт, пополняют ряды специализированных диаг-
ностических лабораторий, медико-генетических центров и инсти-
тутов.
ГЛАВА III
ГЕНЕТИЧЕСКИЕ КАРТЫ, ПОЗИЦИОННОЕ КЛОНИРОВАНИЕ.
Раздел 3.1 Классификация генетических карт, оценка
сцепления.
Генетические карты определяют хромосомную принадлеж-
ность и взаимное расположение различных компонентов генома
относительно друг друга. Возможность построения таких карт
обусловлена двумя фундаментальными характеристиками генома:
линейным характером локализации генов в хромосомах (это оп-
ределяется линейностью молекулы ДНК) и относительной ста-
бильностью расположения облигатных элементов генома в преде-
лах вида. При построении генетических карт используют разные
подходы. В первую очередь, к ним относятся анализ генети-
ческого сцепления на основе определения частот мейотической
рекомбинации в информативных семьях и изучение особенностей
наследования признаков, сцепленных с маркерными хромосомными
перестройками. Во-вторых, исследование экспрессии генов или
поиск специфических последовательностей ДНК в клеточных гиб-
ридах, содержащих лишь часть генома человека - одну или
несколько хромосом или их фрагменты. В ряде случаев с этой
целью используют механический сортинг целых хромосом и даже
их относительно небольших участковв. Эти приемы позволяют
привязать картируемый ген к определенной хромосоме и даже к
определенному фрагменту хромосомы. С помощью комплекса весь-
ма тонких методов хромосомного анализа, прежде всего, мето-
дов гибридизации in situ (см. Главу I) удается картировать
отдельные гены на хромосомах человека часто с точностью до
одного бэнда. И, наконец, методами молекулярного анализа
осуществляют физическое картирование последовательностей
ДНК, локализованных в специфических участках хромосом. Затем
проводят идентификацию в этих последовательностях транскри-
бируемых областей, то есть генов, с последующей изоляцией и
клонированием соответствующих им полноразмерных молекул
кДНК. Каждый из рассмотренных этапов анализа структуры гено-
ма завершается построением карт генов, различающихся по еди-
ницам измерения расстояний между отдельными элементами этих
карт, масштабам, по насыщенности или степени детализации на
различных участках генома. Соответственно различают карты
сцепления, генетические карты, цитогенетические карты инди-
видуальных хромосом и физические или молекулярные карты оп-
ределенных участков ДНК. Для полной молекулярной идентифика-
ции отдельных элементов генома, то есть определения их гра-
ниц, структуры и нуклеотидной последовательности, необходимо
совмещение всех типов карт в местах локализации этих элемен-
тов.
Первым шагом на пути построения генетических карт явля-
ется формирование групп сцепления генов, контролирующих
различные наследственные признаки, и исследование их взаим-
ного расположения в этих группах. На следующем этапе опре-
деляют соответствие между генетическими группами сцепления
и цитогенетически идентифицируемыми хромосомами или их
фрагментами. Цитогенетическую идентификацию хромосом прово-
дят с использованием методов дифференциальной окраски
(см.раздел 3.2). По мере появления все большего числа лока-
лизованных признаков эффективность построения генетических
карт значительно возрастает, так как увеличивается число
маркированных участков хромосом и, таким образом, появля-
ется возможность комбинированного использования различных
экспериментальных подходов для более подробного исследова-
ния этих участков.
Принципиальная схема картирования неизвестных генов,
представленная на Рис.3.1, включает следующие этапы. 1. Вы-
яснение группы сцепления; 2. Поиск ближайших фланкирующих
маркеров; 3. Определение физической области (ДНК-последова-
тельности), включающей искомый ген; 4. Клонирование набора
фрагментов ДНК, перекрывающих исследуемую область; 5. Выде-
ление из этого набора клонов, содержащих транскрибируемые
ДНК-последовательности, предположительно соответствующие
гену или его фрагменту; 6. Анализ специфических мРНК и кло-
нирование кДНК-последовательности; 7. Секвенирование и
идентификация самого гена (Wicking, Williamson, 1991).
Рассмотрим подробнее эту схему.
Построение карт сцепления основано на изучении про-
цессов расхождения и рекомбинации гомологичных хромосом в
мейозе. Генетические признаки, локализованные в разных хро-
мосомах, не сцеплены друг с другом, то есть передаются от
родителей детям независимо, и частота их рекомбинации (Q)
составляет 0.5. Это обусловлено случайным характером
расхождения гомологичных хромосом в мейозе во время редук-
ционного деления. Гены, локализованные в одной хромосоме,
рекомбинируют за счет кроссинговера, то есть за счет обмена
участками гомологичных хромосом в процессе их спаривания в
мейозе (Рис.3.2). При этом порядок генов не нарушается, но
в потомстве могут появиться новые комбинации родительских
аллелей. Вероятность кроссинговера между двумя генами за-
висит от расстояния между ними. Чем ближе гены расположены
друг к другу, то есть чем больше они сцеплены, тем эта ве-
роятность меньше.
Оценку сцепления между генами проводят на основании
статистического анализа сегрегации признаков в семьях с
разветвленными родословными. Чаще всего при этом используют
метод максимального правдоподобия (Kao, 1983), то есть
подсчитывают десятичный логарифм шансов - lod (log of the
odds), где шансы (odds) выражаются как отношение вероят-
ности наблюдаемой родословной при условии, что два гена
сцеплены (0 < Q < 0.5), к той же вероятности при отсутствии
сцепления (Q = 0.5). Если значение lod > +3, гены локализо-
ваны в одной хромосоме, причем максимально правдоподобная
оценка соответствует максимальному значению lod. При значе-
ниях lod < -2 гены не сцеплены, то есть локализованы в раз-
ных хромосомах или на разных концах одной хромосомы. Ста-
тистическую обработку родословных обычно проводят с помощью
компьютерных программ, наиболее известные из которых прог-
раммы LIPED, CRIMAP и LINKAGE (Ott, 1985; Ott, 1991;
Terwilliger, Ott, 1994). На генетических картах сцепления
расстояние между генами определяется в сантиморганах (сМ).
... активных факторов в биосфере. Поэтому генетико-гигиеническое нормирование содержания подобных факторов в окружающей среде является обязательным компонентом профилактики заболеваемости человека. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических ...
нетика, микробиология, вирусология. Генетика человека — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Глава 2. Русские учёные в развитии генетики генетика наследственность ученый лобашев филипченко Филипченко Юрий Александрович У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических ...
... в практику, должны быть разработаны методы для установления степени риска либо в отдельных семьях, либо путем скринирования всех родителей. Это изменит назначение медицинской генетики от генетики, консультирующей ретроспективно, к службе генетического предупреждения на перспективной основе. Может возникнуть новое отношение к ответственности родителей к воспроизводству потомства, которое вместе с ...
... гнезда", "Войны и мира", "Вишневого сада". Важно и то, что главный герой романа как бы открывает целую галерею "лишних людей" в русской литературе: Печорин, Рудин, Обломов. Анализируя роман "Евгений Онегин", Белинский указал, что в начале XIX века образованное дворянство было тем сословием, "в котором почти исключительно выразился прогресс русского общества", и что в "Онегине" Пушкин "решился ...
0 комментариев