6.4.2 Методика интерпретации данных ГИС в горизонтальных скважинах
Решение геологических задач осуществляется путем интерпретации данных ГИС. С помощью современных методических и технических средств, с привлечением геологических материалов (результаты испытания в открытом стволе и колонне, промывочных жидкостей и т.д.), полученных по данной скважине, а также по скважинам, расположенным в пределах изучаемой площади и соседних площадей со сходными геолого-геофизическими условиями.
Интерпретация результатов исследований скважин по проектируемым работам будет производиться на персональном компьютере по системе “СИАЛ”.
Назначение.
Проведение обработки на ПЭВМ данных геофизических исследований скважин с целью получения информации о литологии разреза, наличии коллекторов, характере и степени их насыщения, фильтрационно-емкостных свойствах.
Считывание, просмотр, корректировка, подготовка в требуемых форматах исходных кривых и результатов обработки данных ГИС по фондовым и архивным скважинам для формирования баз данных.
Получение информации о литологии, насыщении, коллекторских свойствах пластов при построении детальных геолого-геофизических моделей месторождений, залежей, участков.
Обоснование параметров для подсчета запасов и составления технологических схем разработки, формирование планшетов.
Оперативная обработка и интерпретации данных ГИС и выдача заключений любой формы по разведочным и эксплутационным скважинам, в том числе и на борту каротажной станции при работе на скважинах.
Применение.
Система СИАЛ-ГИС реализует непрерывный, полностью автоматизированный процесс обработки по скважине, от каротажных кривых на входе, представленных в различных форматах, в том числе LAS- формате, до традиционного заключения любой формы на выходе, включая все необходимые этапы интерпретации.
Наряду с традиционными алгоритмами, реализующими основные этапы интерпретации в любом районе, система содержит эффективные решения специфических задач, актуальных в Западной Сибири с учетом специфики комплекса измерений и геологических особенностей района работ.
Система имеет петрофизическое обеспечение по большинству нефтяных месторождений Западной Сибири, находящихся в стадии эксплуатационного разбуривания (более 200 месторождений). Кроме того, пользователю предоставляется возможность самостоятельно заносить любые петрофизические зависимости, в том числе с привлечением данных акустики, плотностного много зондового нейтронного каротажа.
В системе реализован интерактивно-графический режим, обеспечивающий широкие возможности просмотра и корректировки на экране исходных данных, промежуточных и окончательных результатов. Налаженный интерактивно-графический диалог с геофизиком в процессе интерпретации значительно повышает качество и производительность работы интерпретатора, способствует его творческому участию в процессе обработке.
Система обеспечивает быструю и качественную обработку больших объемов ГИС при меньшей по сравнению с другими комплексами трудоемкости, обеспечивает возможность многовариантной интерпретации и пере интерпретации с любого этапа обработки. Все это особенно актуально для районов Западной Сибири с их огромными объемами эксплуатационного и разведочного бурения.
Система легко стыкуется с любыми другими системами через международный LAS-формат.
Система легко запускается и осваивается интерпретаторами.
Система постоянно совершенствуется, легко дополняется новыми задачами и возможностями.
Заключение можно представить в табличном и графическом виде.
Пористость определяется по данным АК, НКТ и ГГК с учетом определения глинистости по диаграммам ПС и ГК. Интерпретация проводится с использованием графиков зависимости изменения глинистости и пористости с глубиной, построенных по данным анализа керна для Федоровского месторождения. Определение параметра пористости РП проводится при помощи графиков зависимости изменения РП с увеличением КП, с учетом литологического типа пород. Для расчета УЭС водоносных пластов (rВП = РП × rВ) используются значения rВ, определенные по известной минерализации пластовых вод установленные в лабораторных условиях.
Коэффициент водонасыщения определяется по графику зависимости параметра насыщения РН от коэффициента водонасыщения КВ, с учетом типа коллекторов.
При интерпретации материалов ГИС определяются следующие основные параметры:
Эффективная мощность пласта;
Коэффициент пористости;
Коэффициент нефтенасыщения;
Определение эффективной мощности пласта.
В данном случае под эффективной мощностью понимается мощность пласта выше ВНК за вычетом мощности прослоев неколлекторов (глинистых, непроницаемых и др.), а также части мощности коллекторов, не удовлетворяющей требованиям кондиции по пористости, проницаемости и нефтенасыщенности. В водонефтяной зоне эффективная (нефтенасыщенная) мощность определяется в интервале от кровли пласта до поверхности ВНК.
Определение коэффициента пористости (КП).
Проводится по диаграммам нейтронного и акустического каротажа с учетом уже определенного коэффициента глинистости. Дальнейшая интерпретация основана на методике Ахиярова В.Х.
Глинистость коллекторов определяется по ПС и ГК с использованием графика зависимости изменения глинистости с глубиной.
Установлено, в пределах коллекторов, т.е. в пределах минимальной и максимальной глинистости, ПС и ГК ограничиваются значениями: 1,0≥ αПС ≥0,2; 0,8≥DJГЛ ≥0; где DJГЛ – разностный параметр.
, (6.2)
Общая схема интерпретации одинакова для ПС и ГК и заключается в следующем. На диаграммах ПС и ГК проводится по две опорные линии, соответствующие линии чистых песков (αПС =1,0; DJГЛ = 0) и глин (αПС = 0,2; DJГЛ = 0,8). Между этими линиями устанавливается линейная шкала глинистости совмещением крайних значений данных керна на глубине изучаемого пласта с опорными линиями. Опорные линии соответствуют чистым неглинистым песчаникам.
Точность определения КГЛ по двум методам можно считать хорошей, если разница между значениями, полученными по ГК и ПС, не превышает среднеквадратичного значения глинистости данного литологического типа. Далее по диаграммам нейтронного каротажа ведется расчет пористости.
Общая формула определения пористости по НК следующая:
КП = w - wГЛ × КГЛ , (6.3)
где: w и wГЛ – соответственно суммарное водородосодержание изучаемого пласта и водородосодержание объема глинистого материала в коллекторе;
КГЛ – глинистость коллектора.
Значения w и КГЛ определяются по данным каротажа, а wГЛ по среднестатистическим данным.
Для полимиктовых коллекторов:
, (6.4)
Подставляя wГЛ из 6.4 в 6.3 получим:
, (6.5)
где: – минимальная глинистость на глубине погружения H изучаемого пласта
Суммарное водородосодержание изучаемого пласта определяется по логарифмической шкале, устанавливаемой по результатам эталонирования аппаратуры или по двум опорным пластам.
Определение пористости по акустическому каротажу сводится к следующему:
Для определения пористости глинистых коллекторов обычно применяется формула:
, (6.6)
где: DtСК, DtЖ, DtГЛ – соответственно интервальные времена прохождения волн в скелете породы, порозаполняющей жидкости и глинистом материале.
Второй член уравнения определяется по среднестатистическим данным и соответствует:
, (6.7)
Тогда расчетная формула для определения пористости принимает следующий вид:
, (6.8)
Для полимиктовых коллекторов с учетом результатов исследований при расчетах принимается: DtСК = 170 мкс/м; DtЖ = 645 мкс/м.
Литотип коллекторов определяется с помощью значений αПС и DUПС, где αПС – отношение амплитуды DUПС изучаемого пласта к опорному (чистый неглинистый песчаник). Если αПС > 0,7 – песчаник, 0,4< αПС < 0,7 – алевролит, 0,2< αПС < 0,4 – глинистый алевролит.
Определение КН и характера насыщения коллекторов.
По известному значению КП определяется параметр пористости РП. Далее определяется УЭС водоносного пласта по формуле:
rВП = РП × rВ , (6.9)
где: РП – параметр пористости;
rВ – УЭС воды.
По известному значению УЭС водоносного пласта можно определить параметр насыщения РН по формуле:
РН = rНП / rВП, (6.10)
где: rНП – УЭС незатронутой проникновением фильтрата ПЖ части пласта;
rВП – УЭС водоносного пласта.
По полученному значению, при помощи графика зависимости РН = f (КВ) определяются коэффициенты водонасыщения и нефтенасыщения, связанные между собой следующим соотношением:
КНГ = 1 - КВ , (6.11)
Для определения характера насыщения и коэффициента нефтенасыщения необходимо знать УЭС пластов. В таблице 6.1 приведены значения параметра насыщения РН для определения характера насыщения.
Таблица 6.1.
Зависимость характера насыщения коллекторов от парметра насыщения.
Порода, литотип | Характер насыщения | ||
нефть | неясно | вода | |
Песчаник Алевролит глинистый алевролит | РН ³ 3 РН ³ 2 РН ³ 1,2 | 3 > РН > 2 2 > РН > 1,2 1,2 > РН > 1,0 | РН ≤ 2 РН ≤ 1,2 РН ≤ 1,0 |
Для глинистых и сильно глинистых коллекторов эффективна методика определения характера насыщения, основанная на отношении показаний малых градиент-зондов rК1,05/ rК0,45 против исследуемого пласта с учетом αПС.
При отношении:
1,66 – коллектор нефтенасыщен;
1,661,26 – зона неоднозначности;
1,26 – коллектор водонасыщен.
При определении характера насыщения учитываются показания термометрии. При проявлении термоанамалии т.е. понижение температуры в коллекторе, то исследуемый интервал выделяют как обводненный, хотя и имеет высокие сопротивления флюидов насыщения.
Глава 7. Мероприятия по охране недр и окружающей среды, охране труда и технике безопасности
... , так как часть нагнетательных скважин находится в отработке на нефть. 3.4 Анализ результатов гидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов На Южно - Ягунском нефтяном месторождении проводится обязательный комплекс гидродинамических исследований скважин. Он включает замеры: - дебитов добывающих скважин, - приемистости нагнетательных скважин, ...
... (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления. 4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса. 5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность. 6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая ...
... оранжевую окраску моркови. Глава 3. ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ УГЛЕВОДОРОДОВ Алканы, алкены, алкины и арены получают путем переработки нефти (см. ниже). Уголь тоже является важным источником сырья для получения углеводородов. С этой целью каменный уголь нагревают без доступа воздуха в ретортной печи. В результате получается кокс, каменноугольный деготь, аммиак, сероводород и каменноугольный газ. ...
... было бы ожидать в связи с обилием карстующихся пород. Более широко они развиты в южной части страны, где отсутствует сплошная мерзлота. Так, на Лено-Ангарском и Лено-Алданском плато имеется масса карстовых воронок, колодцев, слепых долин и т. д. С активным физическим выветриванием в условиях резко континентального климата связано обилие глыбово-каменистых россыпей, каменных потоков - курумов и ...
0 комментариев