Нейтронные свойства

Геофизические методы исследования горизонтальных скважин Федоровского нефтегазового месторождения Западной Сибири
122005
знаков
6
таблиц
4
изображения

4.4 Нейтронные свойства

Пористость, глинистость, нефте-, водо-, газонасыщенность, химический состав твердой фазы пород, давление и температура влияют на показания нейтронных методов через соответствующие нейтронные характеристики. Характеристиками пространственно-энергетического и временного распределения в г.п. надтепловых и тепловых нейтронов являются длина замедления нейтронов; время замедления нейтронов; дисперсия импульсов замедленных нейтронов; длина диффузии и длина миграции, время жизни и К диффузии тепловых нейтронов. Знание этих параметров небходимо для петрофизического обоснования способов применения нейтронных методов, оптимизации условий измерений, создания алгоритмов обработки результатов, установления связей интерпретационных параметро со свойствами изучаемых сред.

Современная методология нейтроных методов ориентирована на непосредственное измерение нейтронных характеристик г.п. и на их элементный анализ. При радиометрии скважин основное значение имеют процессы рассеяния и поглощения нейтронов. Рассеяние нейтронов, в основном упругое, обуславливает потерю ими энергии и замедление.

Основными факторами, вызывающими замедление и поглащение нейтронов, являютсяводородо- и хлоросодержание среды.Обращает внимание близость нейтронных характеристик нефти и воды, обусловленная практически одинаковым их водородосодержанием.

Для пород с одинаковым минеральным составом скелета величины Ls (длина замедления быстрых нейтронов) и t (среднее время жизни тепловых нейтронов) уменьшаются с ростом их влажности, с увеличением их пористости.

4.5 Акустические свойства

Осадочные горные породы в большинстве своём являются дифференциально упругими и не обладают достаточно совершенной связью между фазами.

Скорость продольных волн в осадочных породах изменяется от 700 до 6000 м/с. В верхних частях разреза, где породы недостаточно уплотнены или просто рыхлые, наименьшая скорость наблюдается в песчаниках и глинах. Такое же распределение скорости в среднем отмечается и в меловых отложениях, ниже по разрезу значения скорости в среднем в различных породах сближаются.

Основными факторами, влияющими на скорость распространения упругих колебаний в глинистых песчаниках , являются: литолого-минералогический состав, поровое пространство, заполненное жидкостью, степень насыщения пор жидкостью или газом, степень цементации, текстурные и структурные особенности, разность горного и пластового давлений (эффективное давление). Скорость распространения упругих волн в нефти и газе меньше, чем в воде. Это объясняется большей сжимаемостью углеводородов, чем воды. Так скорость распространения волн в песке, полностью насыщенном нефтью, на 15-20% меньше, чем в песке, заполненном водой.

Нефть оказывает определённое влияние на скорость и поглощение волн при прохождении их через залежь. Хотя величина этого влияния твёрдо не устаноалена, данные полученные на изучении ряда месторождений в условиях естественного залегания нефтегазоносных и водоносных слоёв показали, что скорость распространения в нефтегазоносных отложениях уменьшается по сравнению со скоростью в водоносной части в среднем на 0.5 км/с.

В отдельных случаях уменьшение скорости распространения в нефтегазоносных отложениях может достигать 1км/с и более, или 30-35%.

Большое значение имеют термодинамические условия залегания нефти. С повышением температуры скорость распространения уменьшается, причем наиболее ярко в нефтенасыщенных породах (до 30% и более) по сравнению с газо- и водонасыщением. Увеличение давления (глубины), наоборот, ведет к повышению скорости распространения.

4.6 Физические свойства нефти и газа

Плотность нефти в поверхностных условиях колеблется в пределах 0.73-1.03г/см3(при t=200с). Вязкость нефтей (свойство их подвижности), измеряемая в паскалях на секунду(1Па*с=10П), изменяется в широком диапозоне 0.001-0.15Па*с и с повышением температуры снижается. Для характеристики пластовой нефти определяют газовый фактор(м3/т)-количество растворенного в пластовой нефти газа, выделяемого при t0=150с, давлении ~100 кПа из 1т нефти. Газовый фактор колеблется в широких пределах (от едениц до сотен куб.метров на 1т.) Давление, при котором начинается выделение из пласта растворённого газа, называют давлением насыщения. Как правило, они ниже пластового.

Объёмный коэффициент пластовой нефти-это отношение удельного объёма нефти в пластовых условиях к объёму этой же, но дегазированной на поверхность нефти в нормальных условиях. Значение объемного К в зависемости от газового фактора изменяется от 1.05 до 1.3. При гидродинамических исследованиях и других расчетах объём и дебит нефти пересчитывают на пластовые условия с помощью объемного коэффициента.

Природный газ.

Относительная плотность газа по воздуху 0.56-0.66. Газ нефтенасыщенного пласта содержит до 45% метана, а первых четырех гомологов (метан, этан, пропан, бутан)- в сумме до 99%. При поисково-разведочных работах сравнительно низкое содержание метана в пробах флюида, отобранного из пласта, рассматривается как признак нефтяной залежи.

В процессе геологоразведочных работ сталкиваются с явлением, когда пустоты пород в при скважинной зоне продуктивного пласта содержат многокомпонентный флюид (газ, нефть, воду) в различных сочетаниях и соотношениях , что осложняет однозначное решение поставленных задач.

Характеристика пластов приведена в таблице 4.1


Таблица 4.1. Характеристика коллекторов пластов Федоровского месторождения

Показатели Пласты
АС4 АС5-6 АС7-8 АС9 БС1 БС2 БС101 БС10
Год открытия       1971 г.        
Тип залежи   Пластовые сводные        
Тип коллектора   Терригенные        
Возраст отложений Мел.(вартовская свита) Мел.(мегионская свита)
Глубина залегания, м средняя абсолютная отметка кровли пласта 1775 1807 1825-1837 1842-1853 1950-1975 1955-1975 2160-2170 2220
Площадь нефтеносности ,км 2 300,3 875,7 49,2 38,0 202,6 36,1 164,3 850,7
Нефтенасыщенная толщина пласта , м 4,3 5,6 6,3 4,8 3,7 4,9 3,1 10,2
Нефтегазонасыщенная толщина пласта ,м 12,0 20-22 18-20 16,0 6,0 16,0 12,0 40,0
Пористость 25,6 26,0 24,0 26,0 26,0 27,0 24,0 24,0
Проницаемость ,мкм2 0,507 0,532 0,162 0,309 0,248 0,363 0,219 0,265
Коэффициент нефтенасыщенности 0,290 0,630 0,540 0,670 0,640 0,660 0,670 0,680
Коэффициент песчанистости 0,295-0,507 0,524-0,655 0,535-0,567 0,466-0,488 0,454- 0,600 0,545-0,653 0,336-0,608 0,403-0,563
Коэффициент расчлененности 1,6-2,14 5,7-9,5 5,6 4,1-4,6 1,6-2,7 3,98-4,3 2,0-2,4 5,0-9,7
Удельная продуктивность ,10 м3 / м сут Мпа 0,320 0,380 0,200 0,490 0,280 0,280 0,320 0,850
Пластовое давление ,Мпа 18,800 18,800 18,800 19,000 20,500 20,500 22,900 23,100
Пластовая температура,oC 56 58 58 58 59 62 67 68

Глава 5. Горизонтальные скважины

Горизонтальными скважинами называют скважины с большим зенитным углом (обычно больше 85 градусов),пробуренные с целью увеличения нефтегазоотдачи продуктивного пласта проходки в залежи горизонтального участка ствола большой протяженности. В этом состоит их отличие от скважин с большими отходами забоя от устья, которые представляют собой наклонно-направленные скважины с большим зенитным углом, пробуренные с целью пересечения продуктивного пласта в заданной точке.

Хотя нефть и газ добывались с помощью наклонных и/или горизонтальных скважин еще с сороковых годов, до 1979 года было пробурено очень немного горизонтальных скважин. Самым обычным способом увеличения продуктивности вертикальных скважин был и продолжает оставаться гидравлический разрыв пласта. Горизонтальные скважины обеспечивают увеличение добычи по сравнению с вертикальными скважинами, в которых не было гидроразрыва пласта. Поэтому в настоящее время появились стимулы для исследования и осмысления методики выбора места заложения, методов бурения, заканчивания и испытания скважин, интенсификация притока и в целом разработки залежей с помощью наклонных и/или горизонтальных скважин. В определенных условиях это может привести к значительному увеличению годового дохода от эксплуатации скважин.

В период между 1978 и 1985 годами горизонтальное бурение применялось редко. Первые скважины были экспериментальными, дорогими и часто проводились с превышением сметы. Тем не менее, они создали основу для дальнейшего развития горизонтального бурения.



Информация о работе «Геофизические методы исследования горизонтальных скважин Федоровского нефтегазового месторождения Западной Сибири»
Раздел: Геология
Количество знаков с пробелами: 122005
Количество таблиц: 6
Количество изображений: 4

Похожие работы

Скачать
207248
50
18

... , так как часть нагнетательных скважин находится в отработке на нефть. 3.4 Анализ результатов гидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов На Южно - Ягунском нефтяном месторождении проводится обязательный комплекс гидродинамических исследований скважин. Он включает замеры:  - дебитов добывающих скважин,  - приемистости нагнетательных скважин, ...

Скачать
249350
33
10

... (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления. 4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса. 5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность. 6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая ...

Скачать
90842
9
15

... оранжевую окраску моркови. Глава 3. ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ УГЛЕВОДОРОДОВ Алканы, алкены, алкины и арены получают путем переработки нефти (см. ниже). Уголь тоже является важным источником сырья для получения углеводородов. С этой целью каменный уголь нагревают без доступа воздуха в ретортной печи. В результате получается кокс, каменноугольный деготь, аммиак, сероводород и каменноугольный газ. ...

Скачать
556297
1
0

... было бы ожидать в связи с обилием карстующихся пород. Более широко они развиты в южной части страны, где отсутствует сплошная мерзлота. Так, на Лено-Ангарском и Лено-Алданском плато имеется масса карстовых воронок, колодцев, слепых долин и т. д. С активным физическим выветриванием в условиях резко континентального климата связано обилие глыбово-каменистых россыпей, каменных потоков - курумов и ...

0 комментариев


Наверх