Гидротермальные изменения


Введение

Гидротермы по-разному влияют на породы, проходя через них: в процессе гидротермальных изменений существующие минералы могут быть удалены, или замещены другими минералами, или в трещинах и порах пород могут отложиться новые минералы. Все эти процессы могут происходить совместно. Новые минералы, которые образовались или путём отложения в полостях, или в результате замещения, называются вторичными минералами. В этой главе рассмотрены вторичные минералы, образованные в результате гидротермальных изменений других минералов. Отложение минералов обсуждается в другой главе, поскольку их минералогия похожая, но структуры совершенно разные.

Гидротермальные изменения сопоставимы с диагенезом, при котором первичные минералы замещаются диагенетическими фазами по мере погребения в толщах пород и последующего увеличения температуры и давления. Поскольку температуры могут быть одинаковыми в обоих структурных условиях, в связи с этим, возможно, образование одинаковых минералов. Это может вызвать трудности в диагностике различий гидротермальных изменений и диагенеза в метаморфизованных породах.

Природа вторичных минералов и скорость их образования контролируются такими факторами, как температура, состав гидротерм и отношение вода/порода. Последний фактор зависит от проницаемости пород, скорости течения гидротерм и продолжительности процесса. Гидротермальные изменения наиболее интенсивны в проницаемых породах, где скорость течения гидротерм большая, и системы долгоживущие. Гидротермальные изменения могут быть описаны с точки зрения их интенсивности, степени изменений и распространенности.


1. Интенсивность гидротермальных изменений

Интенсивность гидротермальных изменений является индикатором объёма пород, изменённых в результате прохождения через них гидротермальных растворов. Интенсивность гидротермальных изменений можно определить довольно точно по доле вторичных минералов относительно оставшейся доли первичных минералов или же по сохранившейся первичной структуре. Интенсивность будет различной для разных литологических типов пород в соответствии с проницаемостью пород и реакционной способностью первичных компонентов. Таким образом, высоко проницаемые известняки или витрофировые туфы будут чрезвычайно чувствительными к гидротермальным изменениям, тогда как кварцевый песчаник очень медленно подвергается воздействию гидротермальных растворов. Обычная последовательность минералов, от более реактивно способных к менее подверженным воздействию гидротерм, следующая: карбонаты, вулканическое стекло, мафические минералы, плагиоклаз, К-полевой шпат, апатит, кварц, циркон.

Имеются исключения. Так, например, в некоторых породах полевой шпат будет изменённым, в то время как мафические минералы сохранятся, и это означает, что чувствительность обычных минералов к гидротермальным изменениям зависит от наличия гидротерм.

Интенсивность гидротермальных изменений может определяться процентными содержаниями, или могут применяться описательные категории. Наш подход представлен описанием гидротермальных изменений, как «слабые», где вторичные минералы составляют до 25% объёма пород, «умеренные», где они составляют 25-75% и «сильные», если общее содержание вторичных минералов более 75%. Породы, в которых отсутствуют вторичные минералы, являются неизменёнными. В породах с остатками небольшого количества первичных минералов гидротермальные изменения являются интенсивными, если первичные текстуры не наблюдаются.


2. Степень гидротермальных изменений

Степень гидротермальных изменений является индикатором условий, ответственных за формирование в породах вторичных минералов. Таким образом, породы, которые содержат вторичные минералы, образовавшиеся при низкой температуре, описываются в качестве низкой степени гидротермальных изменений, тогда как минералы, образованные в высокотемпературных условиях, характеризуют высокую степень гидротермальных изменений, а минералы, образованные при промежуточных температурах, характеризуют промежуточную степень изменений.

Интенсивность и степень гидротермальных изменений, обусловленные действием гидротермальных растворов, контролируются двумя конфликтными факторами. С одной стороны, большинство химических реакций протекают быстрее при высоких температурах и гидротермы более мобильны. Таким образом, быстрые гидротермальные изменения ожидаемы на больших глубинах. Наоборот, гидротермы при около магматических температурах, в основном магматического происхождения, могут находиться ближе к равновесию с изверженными породами. Кроме того, соединения такие, как HCl, значительно меньше диссоциированы при высоких температурах, что означает меньшую эффективную кислотность, чем она могла бы ожидаться при молярной концентрации HCl.


Эти эффекты определены количественно для реакций угольной кислоты с риолитами. Авторы определили, что степень реактивоспособности самая наибольшая при 150-200°С. Скорость распространения гидротермальных изменений при 200°С была в 27 раз выше, чем при 350°С. При более низких температурах скорость реакции очень мала, чтобы быть эффективной.

Следовательно, имеется ограничительный потенциал для гидротермальных изменений интрузий, которые образуют источник тепла для гидротермальной системы, или изверженных вмещающих пород. Около интрузивные гидротермальные изменения ограничиваются определёнными объемами, количеством гидратации, калия и кремневого метасоматизма, формирующими КПШ и биотит.. По мере остывания гидротерм и разбавления подземными водами происходит их преобразование через реакции, они всё более и более приходят в равновесие с вмещающими породами. Таким образом, по мере того, как скорость реакции замедляется, она может иметь большее влияние на минералогический состав пород. Обычно процесс состоит в удалении ферромагнезиальных катионов и в замещении их щелочами, наряду с привносом кремния, гидратации и в переменных масштабах карбонатизации и сульфидизации. По мере того как температура понижается, отношение Na/K в гидротермах поднимается и, соответственно, падает в породах. Этот процесс приводит к образованию систематической зональности гидротермальных изменений, которые мы наблюдаем в гидротермальных системах.



Информация о работе «Гидротермальные изменения»
Раздел: Геология
Количество знаков с пробелами: 24188
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
6768
0
0

... прожилки и агрегаты гранобластового кварца и последними развиваются, как правило, тонкие прожилки, выполненные оксидами железа (наблюдаются только у поверхности). Гидротермальные изменения околожильных пород по изученным месторождениям и рудопроявлениям, в общем, однообразны. Но последним могут быть свойственны некоторые особенности, они рассматриваются ниже. На участке Дейкау граниты ...

Скачать
46059
0
16

... карбонатные породы, вызывая обширные кремнистые замещения. Гидротермальная система может быть любого, описанного ранее, типа. Во многих ископаемых конвективных ячейках главных типов гидротермальных систем рудная минерализация может находиться в виде месторождений карбонатного замещения. В большинстве этих месторождений рудная минерализация близка синхронной рудной минерализации изверженных пород, ...

Скачать
11983
0
5

ределах одного жизненного цикла гидротермальной системы, влияют на эволюционные изменения следующие: - физические изменения в результате остывания; - химическая эволюция вследствие изменений первичных флюидов; - химическая эволюция вследствие изменений вторичных гидротерм; - эрозия. Эти факторы определяют все процессы в гидротермальной системе, но их удобнее рассматривать во времени по ...

Скачать
26549
0
13

... состава. В свою очередь, процесс преобразования верхней части гидротермальной системы, обусловленный взаимодействием двух сред вода-порода, может привести к уменьшению проницаемости этой части гидротермальной системы. По-видимому, таким образом, должно происходить фокусирование (сосредоточение) большей части потока гидротерм в относительно небольших каналах (дренах), которые также ...

0 комментариев


Наверх