2.3 Методы расчета предельных безводных и безгазовых дебитов несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой

При разработке нефтегазовых залежей с подошвенной водой или нефтяных оторочек возникают сложные гидродинамические задачи по определению предельных безводных и безгазовых дебитов, предельных депрессий, наивыгоднейшего интервала вскрытия нефтяной оторочки относительно ГНК и ВНК, безводного периода, безводной нефтеотдачи на момент полного обводнения или загазовывания скважин. Приближенная теория стационарных конусов применительно к подгазовым нефтяным залежам с подошвенной водой была впервые разработана М.Маскетом и И. А.Чарным. Дальнейшее развитие она получила в работах А.К.Курбанова, П.Б.Садчикова, А.П.Телкова, Ю.И.Стклянина, Р.Чанея, И.Лукерена и др. Формулы Мейера, Гардера и П.М.Шульги для определения предельного безводного и безгазового дебитов исходят из теории безнапорного притока к несовершенной скважине и дают весьма приближенные завышенные против действительных предельных значения, т.к. они фиксируют дебиты уже в момент прорыва газа или воды. Рассмотрим приближенные, но более обоснованные методы.

2.3.1 Методика расчета предельных безводных и безгазовых дебитов, основанная на гидравлической теории безнапорного притока

Схема одновременного существования газового и водяного конусов показана на рис.2.6. Пусть Нr, Нв, Нн есть гидравлические напоры в газовой, водяной и нефтяной зонах соответственно. Рr, Рв и Рн - пластовые давления в указанных зонах, а Р' - давление в некоторой точке на поверхности раздела газ-нефть и вода-нефть (см.рис.2.6), ρн, ρв, и ρr- плотности нефти, воды и газа соответственно. Тогда относительно точки N можно записать следующее выражение

Hr= ; HH= . (2.6)

Если эту точку переместить на контур скважины, то в соответствии с обозначениями на схеме имеем z=(h-b)+hc. Решая совместно два уравнения, исключая Р1 и пренебрегая капиллярным давлением РК=РН-РГ, получаем

HH =  + (h - b+he) ; Δρ1 = ρH - ρr . (2.7)

Аналогично для точки М, перемещенной на контур скважины, получаем

Нв =  - (h-b)  ; Δρ2 = ρв – ρн

Если поместить точки N и М на контур пласта, то получаем, соответственно, выражения

Нн =  +  ; Hн =  (2.8)

из которых следует

Нгρв = Нвρв – hΔρ1 (2.9)

Решая совместно (2.7), (2.8) и (2.9), находим нижнее положение интервала перфорации, обеспечивающее критическое значение безводного и безгазового дебита при заданном значении hc

b = h0 - (h-hc)  ; Δρ3 = ρв-ρr. (2.10)

Определим ординату z0 нейтральной линии тока. Уравнения для напоров (2.7) и (2.8) относительно плоскости z0 (см.рис.2.6) записываются в виде:

Hн =  +  ; Нн =  -  (2.11)

Решая совместно (2.11) и (2.9), получаем

z0 =  . (2.12)

Расстояние bi от нижних отверстий перфорации до нейтральной линии тока, как это следует из схемы, есгь

b1 = z0-(h - b) =. (2.13)

Таким образом, определив ординату нейтральной линии тока (горизонтальную плоскость) и заменив ее непроницаемой жесткой перегородкой, формально получаем два пласта.

Дифференциальное уравнение безнапорного притока для верхнего пласта есть

Q1 =  . (2.14)

Разделяя переменные и интегрируя (2.14) в пределах по r от rс до R0 и по z от z2 до z1, где

z1 = h-z0;

z2 = hc- (2.15)

получаем

Q1 (h2-hc2)(l- )2 . (2.16)

Интегрируя уравнение для нижнего пласта, получаем

Q2= r(z0-z) ; (2.17)

в пределах по r от r0 до R0 и по z от z1 = z0-a до z2, получаем

Q2 =  . (2.18)

Суммарный критический дебит Q=Q1+Q2 определится формулой

Q =  , [Δρ1 (1 – )2 + Δρ2()2] (2.19)

Здесь принимаются следующие размерности:

[Кг]=м2; [h]=м; [Δρ]=кг/м3; [μ]=; [Q]=m3/c.

Пример 1. Рассчитать интервал перфорации, положение нейтральной линии тока и предельный безводный и безгазовый дебит скважины, дренирующей нефтяную оторочку при следующих исходных данных:

пласт горизонтальный однородно-изотропный, æ*=1;

условный контур питания R0=200м;

толщина нефтяной оторочки h=25м;

проницаемость пласта Кг=1,02 • 0,5 10"12м2;

вскрытая толщина hc=12,5M;

радиус скважины rс=0,1м; вязкость нефти μн=2,5мПас=0,1021032,5кг с/м2;

разность плотностей жидкостей Δρ1= 870кг/м3, Δρ2=200кг/м3, Δρ3=1070кг/м3;

скважина совершенная по характеру вскрытия.

Расчеты, произведенные по формулам (2.10), (2.12), (2.13) и (2.19), дают следующие результаты: b=14,84м; z0=20,33m, b1=10,16м; Q=9,87м3/сут. Следовательно, а=2,34м и у=10,17м. Следует заметить, что полученный расчетный предельный дебит больше действительного предельного, т.к. формула (2.19) получена из условия «устойчивости» конусов уже при достижении ими вершин интервала перфорации. Строго говоря, устойчивость конусов при таком положении невозможна.


Информация о работе «Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей»
Раздел: Геология
Количество знаков с пробелами: 45377
Количество таблиц: 1
Количество изображений: 7

0 комментариев


Наверх