Вступ Вступ 1. Гідроаеромеханіка

2. Гідростатика. Рівновага рідин і газів

3. Гравітаційне моделювання

4. Гідравлічний удар 5. Стискальність

Висновки

Література


Вступ

Ще в 19 столітті два фізичних підходи - макроскопічний (термодинамічний) і мікроскопічний (молекулярно-кінетичний) - доповнили один одного. Ідея про те, що речовина складається з молекул, а ті, у свою чергу, з атомів знайшла переконливе підтвердження.

Здавалося, на основі кінетичної теорії, легко можна визначити властивості газів, оскільки досить знати властивості вхідних до складу молекули атомів для визначення властивостей самої речовини, але в дійсності все виявилося не так просто. Завдяки цій теорії вдалося визначити лише деякі властивості газів, наприклад, вивести рівняння стану газів, але для визначення таких характеристик газів як коефіцієнти теплопровідності, в'язкості й дифузії потрібно було серйозно потрудитися. Для конденсованих середовищ - твердих тіл, рідин і стиснених газів одержати результати було ще сутужніше, оскільки повинне враховуватися те, що молекули взаємодіють між собою не тільки при ударах. Тому, говорити про те, що всі фізичні явища мікросвіту можуть бути пояснені й розраховані на основі молекулярно-кінетичних подань, не доводитися.

Дискретна (не суцільна) будова речовини була виявлена лише наприкінці XIX століття, а досвіди, що доводять існування молекул, проведені в 1908 році французьким фізиком Жаном Батистом Перреном. Виявлення дискретної структури будови речовини дозволило визначити границі застосовності механіки суцільних середовищ. Вона працює тільки в тих випадках, коли систему можна розбити на малі обсяги, у кожному з яких є все-таки досить велика кількість часток, щоб воно підкорялося статистичним закономірностям. Тоді елементи середовища перебувають у стані термодинамічної рівноваги, а їхні властивості описуються невеликим числом макроскопічних параметрів. Зміни в такому малому обсязі повинні відбуватися досить повільно, щоб термодинамічна рівновага зберігалася.

При виконанні цих умов, справедлива гіпотеза про суцільність середовища, що лежить в основі механіки суцільного середовища. Суцільним середовищем уважається не тільки тверде тіло, рідина або газ, але й плазма (навіть сильно виряджена), така, як зоряний вітер. Число часток в елементі обсягу такого середовища невелике, але завдяки великому радіусу дії сил між зарядженими частками мікроскопічні параметри міняються від елемента до елемента безупинно.

Як рухається у вакуумі матеріальна крапка досконально відомо із часів Ісака Ньютона. Набагато складніше описати її рух у повітрі, воді або іншому середовищі. Саме із цими питаннями має справа, що є розділом фізики, наука гідроаеромеханіка.

Ціль роботи: розглянути особливості різних розділів фізики на природу газу й рідини. Систематизувати ці знання. Навести приклади головних законів.


1. Гідроаеромеханіка

Незважаючи на те, що газ і рідина - різні фазові стани речовини, гідроаеромеханіка (механіка текучих речовин), у вивченні цих фаз речовини, не розділяє їх, а вивчає їхні механічні властивості, взаємодію цих властивостей між собою й із твердими тілами, що граничать із ними. Гідроаеромеханіка складається з декількох розділів:

1.  рух зі швидкістю, багато меншої швидкості звуку, вивчає гідродинаміка.

2.  Якщо швидкість руху тіла приблизно дорівнює швидкості звуку або перевищує, такий рух досліджує газова динаміка.

3.  вивчення руху тіл і літальних апаратів в атмосфері ставитися до розділу аеромеханіки.

Об'єднуючі всі розділи гідроаеромеханіки мети – поліпшити форму літальних апаратів, автомобілів; домогтися найбільшої ефективності пристроїв, що використовують рідину або газ (двигунів реактивних літаків або палива у двигунах внутрішнього згоряння); оптимізувати виробничі процеси, пов'язані з використанням рідини або газу (аерозольне нанесення покриттів, створення оптичних волокон, т.д.). Гідроаеромеханіка відрізняється як від емпіричної гідравліки, так і від математичної гідродинаміки, оскільки вона не тільки ґрунтується на твердо встановлених законах фізики, але й опирається на досвідчені дані, перевіряючи й доповнюючи ними теоретичний аналіз. Закони гідроаеромеханіки виявляються корисними не тільки в техніку й промисловості - вони допомагають пророчити й пояснити багато природних явищ, пов'язані з динамічними властивостями повітря й води. Гідроаеромеханіка працює фактично у всіх галузях діяльності людини.

Закони механіки суцільного середовища.

Механіка суцільного середовища ґрунтується на трьох головних законах:

1.  Збереження маси (збереження імпульсу)

2.  Збереження енергії

3.  Другий закон Ньютона (зміна кількості руху пропорційно прикладеній рушійній силі й відбувається по напрямку тієї прямої, по якій ця сила діє).

Але, на відміну від механіки матеріальної крапки, у законі збереження енергії враховується крім потенційної й кінетичної ще й внутрішня енергія, а в законі зміни імпульсу крім «звичайних» об'ємних сил - ваги, електромагнітних і інерційних - на речовину діють додатково й поверхневі сили (поверхневі напруги). У випадку гідроаеромеханіки прикладом поверхневої сили є тиск - нормальна напруга.

Тиск p у газі й рідині створюється за рахунок хаотичних зіткнень молекул і пов'язане з іншими параметрами стану речовини, наприклад, температурою Т и щільністю р – рівнянням стану. Для ідеального газу таким рівнянням стану є рівняння Клапейрона - Менделєєва:

Р = рRT

M

де R - газова постійна, М - молярна маса.

Для рідини, з огляду на її малу стискальність, замість цього співвідношення звичайно використовується умова нестисливості, що істотно спрощує рівняння аеромеханіки:

p = const.

Внутрішня енергія u також визначається рівнянням стану. У невеликому діапазоні температур можна вважати, що внутрішня енергія 1 моля речовини лінійно залежить від температури:


U = cvT

Де cv – молярна теплоємність речовини при постійному обсязі.

Закон збереження імпульсу.

Із законів Ньютона можна показати, що при русі в порожньому просторі імпульс зберігається в часі, а при наявності взаємодії швидкість його зміни визначається сумою прикладених сил. У класичній механіці закон збереження імпульсу звичайно виводиться як наслідок законів Ньютона. Однак, цей закон збереження вірний і у випадках, коли Ньютоновская механіка незастосовна (релятивістська фізика, квантова механіка). Як відзначалося, він може бути отриманий як наслідок інтуїтивно-вірного твердження про те, що властивості нашого миру не зміняться, якщо всі його об'єкти (або початок відліку!) перемістити на деякий вектор L. У цей час не існує яких-небудь експериментальних фактів, що свідчать про невиконання закону збереження імпульсу.

Закон збереження моменту імпульсу.

Якщо поняття імпульсу в класичній механіці характеризує поступальний рух тіл, момент імпульсу вводиться для характеристики обертання і є наслідком твердження про те, що властивості навколишнього світу не змінюються при поворотах (або повороті системи відліку) у просторі.

У випадку нерівності нулю моменту сили спостерігається досить "незвичайне" з погляду "здорового глузду" поводження швидко обертових тіл (їхній момент імпульсу спрямований по осі обертання) з поміщеної на вістря віссю обертання. Такі тіла під дією зовнішніх сил (наприклад, сили ваги) замість того, щоб переміщатися убік дії сили, починають повільно обертатися навколо вістря в перпендикулярній прикладеній силі площини. Незважаючи на те, що подібне поводження є безпосереднім наслідком законів Ньютона (або ще більш загальних законів збереження й симетрії), цей ефект часто не тільки викликає подив в осіб, мало знайомих з точними науками, але й дає їм привід міркувати про "помилковість сучасного природознавства взагалі й класичної фізики зокрема. Заснований на принципі "...якщо я не розумію теорії або спостережуваний ефект, те тим гірше для них...", на жаль дотепер усе ще популярний, хоча вже протягом декількох сторіч природознавство, що розвивається, демонструє його досить низьку евристичну ефективність.

Закон збереження енергії.

Спочатку в механіку були уведені кінетична енергія (обумовлена рухом тіла) і потенційна (обумовленими взаємодіями між тілами й залежна від їхнього розташування в просторі). Конкретне математичне вираження для потенційної енергії визначається взаємодіями між об'єктами. У більшості механічних систем механічна енергія (сума кінетичної і потенційної) зберігається в часі (наприклад у випадку м'яча, що пружно вдаряється об підлогу). Однак нерідкі й такі системи, у яких механічна енергія змінюється (найчастіше убуває). Для опису цього були уведені дисипативні сили (наприклад сили грузлого й сухого тертя й ін.). Згодом з'ясувалося, що дисипативні сили описують не зникнення або виникнення механічної енергії, а переходи її в інші форми (теплову, електромагнітну, енергію зв'язку й т.д.). Історія розвитку природознавства знає кілька прикладів того, як гадане порушення закону збереження енергії стимулювало пошук раніше невідомих каналів її перетворення, що в результаті приводило до відкриття її нових форм (так, наприклад, "безповоротна" втрата енергії в деяких реакціях за участю елементарних часток послужила вказівкою на існування ще однієї невідомої раніше елементарної частки, що згодом одержала назву нейтрино).

Закон збереження енергії має велике практичне значення, оскільки істотно обмежує число можливих каналів еволюції системи без її детального аналізу. Так на підставі цього закону виявляється можливим апріорно відкинути будь-який досить проект досить економічно привабливого вічного двигуна першого роду (пристрою, здатного робити роботу, що перевершує необхідні для його функціонування витрати енергії).

В основі закону збереження енергії лежить однорідність часу, тобто рівнозначність всіх моментів часу, що полягає в тім, що заміна моменту часу t1 моментом часу t2 без зміни значень координат і швидкостей тіл не змінює механічних властивостей системи. Поводження системи, починаючи з моменту t2, буде таким же, яким воно було б, починаючи з моменту t1.

Закон збереження енергії має загальний характер. Він застосовний до усім без винятку процесам, що відбуваються в природі. Повна кількість енергії в ізольованій системі тіл і полів завжди залишається постійним; енергія лише може переходити з однієї форми в іншу. Цей факт є проявом не знищення матерії і її рухи.

Причиною зміни швидкості тіла завжди є його взаємодія з іншими тілами. При взаємодії двох тіл завжди змінюються швидкості, тобто здобуваються прискорення. Відношення прискорень двох тіл однаково при будь-яких взаємодіях. Властивість тіла, від якого залежить його прискорення при взаємодії з іншими тілами, називається інертністю. Кількісною мірою інертності є маса тіла. Відношення мас взаємодіючих тіл дорівнює зворотному відношенню модулів прискорень. Другий закон Ньютона встановлює зв'язок між кінематичною характеристикою руху – прискоренням, і динамічними характеристиками взаємодії – силами. , або, у більше точному виді, , тобто швидкість зміни імпульсу матеріальної крапки дорівнює діючої на нього силі. При одночасній дії на одне тіло декількох сил тіло рухається із прискоренням, що є векторною сумою прискорень, які виникли б при впливі кожної із цих сил окремо. Діючі на тіло сили, прикладені до однієї крапки, складаються за правилом додавання векторів. Це положення називають принципом незалежності дії сил. Центром мас називається така крапка твердого тіла або системи твердих тіл, що рухається так само, як і матеріальна крапка масою, рівній сумі мас всієї системи в цілому, на якій діють та ж результуюча сила, що й на тіло. . Проінтегрував це вираження можна одержати вираження для координат центра мас. Центр ваги - крапка додатка рівнодіючої всіх сил ваги, що діють на частки цього тіла при будь-якому положенні в просторі. Якщо лінійні розміри тіла малі в порівнянні з розміром Землі, то центр мас збігається із центром ваги. Сума моментів всіх сил елементарні ваги щодо будь-якої осі, що проходить через центр ваги, дорівнює нулю.

Потенційна енергія характеризує взаємодіючі тіла, кінетична – що рухаються. І та, і інша виникають у результаті взаємодії тел. Якщо кілька тіл взаємодію між собою тільки силами тяжіння й силами пружності, і ніякі зовнішні сили на них не діють (або ж їх рівнодіюча дорівнює нулю), те при будь-яких взаємодіях тіл робота сил пружності або сил тяжіння дорівнює зміні потенційної енергії, узятої із протилежним знаком. У той же час, по теоремі про кінетичну енергію (зміна кінетичної енергії тіла дорівнює роботі зовнішніх сил) робота тих же сил дорівнює зміні кінетичної енергії.

.

Із цієї рівності треба, що сума кінетичної й потенційної енергій тіл, що становлять замкнуту систему й взаємодіючих між собою силами тяжіння й пружності, залишається постійної. Сума кінетичної й потенційної енергій тіл називається повною механічною енергією. Повна механічна енергія замкнутої системи тіл, взаємодіючих між собою силами тяжіння й пружності, залишається незмінної. Робота сил тяжіння й пружності дорівнює, з одного боку, збільшенню кінетичної енергії, а з іншого боку - зменшенню потенційної, тобто робота дорівнює енергії, що перетворилася з одного виду в іншій.



Информация о работе «Властивості рідини і газу»
Раздел: Физика
Количество знаков с пробелами: 41028
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
195128
11
21

... ів на установці ЭМР-100 у режимі дифракції на відображення з поверхні тертя при напрузі, яка з ковзає , 100 кв. 2.3 Математична модель процесів тертя й зношування покрити по пружно - пластичній основі На підставі [12-21] простір існування властивостей детонаційно-газових покриттів можна описати, як: Ω (Rфм  Rмф  Rфт  Rі) З обліком першого обмеження: Ω  Ψ де Ψ - простір ...

Скачать
56774
10
8

... дозволяє отримати грубу модель структури або субструктури [ 3,4 ]. Розділ 4. Техніка експерименту і характеристика методів проведення дослідження 4.1 Синтез твердих розчинів LnBa2Cu3O7 та LnxLa1-xBa2Cu3O7 (де Ln = Gd, Ho) Зразки полікристалічних розчинів LnBa2Cu3O7 (де Ln = Gd, Ho) були синтезовані твердо-фазним методом. Як вихідні речовини використовувались купрум (II) оксид CuO, барій ...

Скачать
50037
1
10

... габаритність та точність. Розглянемо першу структурну схему, яка приведена на рисунку 2.1. Рисунок 2.1 – Перший варіант реалізації структурної схеми системи для визначення складу вихлопних газів автомобілів Позначення на схемі: V/ – датчик концентрації, який використовується для визначення концентрації вихлопних газів автомобілів; МХ – мультиплексор;  – аналого-цифровий перетворювач; ...

Скачать
35866
22
41

... 350 - 2000 ppm AS-MLC /AppliedSensor Inc. CO 0.5 - 500 ppm AS-MLK /AppliedSensor Inc. CH4 Від 0.01 до 4%   2. Сучасні датчики газів, та методи їх отримання   2.1 Нові матеріали та наноструктури – перспективна база елементів для датчиків газів   В зв’язку з інтенсивним розвитком виробництва поверхневих датчиків газів, досліджуються придатні для їх побудови сучасні напівпрові ...

0 комментариев


Наверх