5. Стискальність

Хоча стискальність (або її зворотна величина – пружність) є властивістю, що, строго говорячи, виводить нас за рамки гідроаеромеханіки, її, принаймні при спрощеній постановці завдання, доводиться враховувати по міркуваннях двоякого роду. По-перше, реальні рідини й гази являють собою пружні середовища, і звукові хвилі поширюються в них зі швидкістю, що обчислюється по однієї й тій же формулі. Якщо швидкість звуку позначити через із, а модуль пружності – через E, то формула запишеться у вигляді

(Швидкість звуку з у повітрі становить 335, а у воді – близько 1430 м/с.) Якщо плин у трубопроводі різко перекрити краном або засувкою, то збурювання від зупинки плину буде поширюватися нагору по трубопроводу зі швидкістю звуку, причому зменшення швидкості середовища за такою хвилею збурювання буде супроводжуватися помітним підвищенням тиску. У випадку рідини підвищення тиску при раптовому перекритті трубопроводу може бути дуже більшим, і піки тиску при взаємодії прямої й зворотної хвиль являють собою небезпечний ефект, називана гідравлічним ударом. Явище поширення звуку у воді, як і в повітрі, має й свої корисні сторони - на цьому заснована гідролокація й апаратура для виявлення підводних човнів

По-друге, стискальність доводиться враховувати й з тієї причини, що саме цією властивістю визначається можливість аналізу рідини й газу на основі тих самих принципів. Критерієм при цьому служить відношення швидкості плину до швидкості пружної хвилі, тобто до швидкості звуку в даному середовищі:

Цей критерій називається числом Маха. (Відзначимо, що число Маха аналогічно числу Фруда, тому що останнє є відношення швидкості плину до швидкості гравітаційної хвилі.) Доти поки величина М мала (0,5), вплив стискальності незначно. Коли ж число Маху наближається до одиниці, картина плину істотно змінюється у зв'язку зі звуковими ефектами. Наприклад, коефіцієнт лобового опору снаряда зі сферичною головною частиною залежить тільки від числа Рейнольдса, поки число Маха не перевищить 0,5; після цього він поступово зростає й приблизно подвоюється, коли число Маху стає більше одиниці, внаслідок утворення звукових хвиль (стрибків ущільнення) у зоні стиску безпосередньо перед снарядом. Подібно тому як носової частини швидкохідних судів надають загострену форму для зменшення носової хвилі й, отже, хвильового опору, загострюють високошвидкісні снаряди й носові частини й передні крайки крил літаків, щоб зменшити втрати в перегонах ущільнення, а тим самим зменшити опір, зв'язаний зі звуковими ефектами. Про більші енергетичні втрати, обумовлених утворенням звукових хвиль, можна судити по тім шумі, що створюють повітряні гвинти літаків, і по пронизливому звуці, яким супроводжується політ снарядів і ракет.


Висновки

Тісна аналогія між процесами утворення хвиль «маховського» і «фрудовського» типів дає можливість дослідникам, що працюють в обох цих напрямках, збирати коштовні плоди, вирощені на загальному ґрунті гідроаеромеханіки. Так, аналіз картини звукових хвиль, застосований до картини гравітаційних хвиль у каналах, дозволив істотно вдосконалити планування таких каналів. І навпаки, дослідження високошвидкісних моделей у надзвукових аеродинамічних трубах звичайно доповнюються дослідженнями в досвідчених басейнах і гідродинамічних лотках, де картину хвиль, створюваних такими тілами, можна вивчати візуально. Поряд з такою аналогією між плином рідин і газів є й розходження, що, однак, теж служить корисної мети як основа для порівняння. Коли швидкість газу в якій-небудь крапці досягає швидкості звуку, у цій крапці, як уже говорилося, може виникнути звукова хвиля. Швидкість рідини через практичні обмеження навряд чи коли-або зможе наблизитися до швидкості звуку, але в рідині існує межа, що накладається тиском насиченої пари самої рідини, для зниження тиску, пов'язаного зі збільшенням швидкості. Коли швидкість рідини сильно зростає в якій-небудь її крапці, внаслідок відповідного зниження тиску рідина в цій крапці скипає. Це явище називається кавітацією. Швидке утворення підвищенні тиску пухирців пари приводить не тільки до зниження коефіцієнта корисної дії насосів і гребних гвинтів, але й до їхнього механічного ушкодження й руйнування, якщо такий процес триває досить довго. Аналогія ж із плином газу криється тут у тім, що зони, небезпечні для обтічного тіла, однакові як при утворенні звукових хвиль у повітрі, так і при виникненні кавітації у воді. Але кавітацію легко спостерігати по помутнінню прозорої води (появі в ній пухирців), тоді як для спостереження звукових хвиль необхідно спеціальне оптичне устаткування. Тому моделі, для яких істотні звукові ефекти в повітрі, часто випробовують на кавітацію в гідродинамічних трубах, що дозволяє вдосконалити конструкцію й усунути багато небезпечних зон.

Механіка рідини й газу є особливим розділом фізики. Як уже говорилося раніше, в основу її входять кілька основних законів. Ці закони актуальні не тільки стосовно розглянутих фаз речовини, але й для твердих тіл (правда, з невеликими «припасуваннями» під фізичну суть цих тіл). Для найбільшої зручності й стислості, закони відбиті в математичних формулах - мові науки. На основі цих законів створені різні механізми, якими оточив себе людина. Механізми сильно полегшують і прискорюють процеси виробництва, та й фізична праця людини як такий. Лише завдяки досягненням в області точних наук стало можливим освоїти те, що було недосяжно для людини раніше. Це глибини океану, можливість пересування в атмосфері, польоти в космос і багато чого іншого. І наука не стоїть на місці. З кожним днем учені наближають нас на крок ближче до пізнання життя. Повністю пізнати Всесвіт, звичайно, неможливо, але осмислити те, що доступно людині згодом неминуче.


Література

1.  Энциклопедия «Аванта+», Т. 16 (I, II части) – М., 2001

2.  Г. Я. Мякишев, Б. Б. Буховцев Фізика. - К, 1997р.

3.  И. К. Кикоин, А. К. Кикоин Физика. - М., 1992

4.  Н. А. Эрдеди, А. А. Эрдеди Теоретическая механика, сопротивление материалов. – М.: Высшая школа, 2002

5.  О. К. Костко Механіка. – К., 1998р.


Информация о работе «Властивості рідини і газу»
Раздел: Физика
Количество знаков с пробелами: 41028
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
195128
11
21

... ів на установці ЭМР-100 у режимі дифракції на відображення з поверхні тертя при напрузі, яка з ковзає , 100 кв. 2.3 Математична модель процесів тертя й зношування покрити по пружно - пластичній основі На підставі [12-21] простір існування властивостей детонаційно-газових покриттів можна описати, як: Ω (Rфм  Rмф  Rфт  Rі) З обліком першого обмеження: Ω  Ψ де Ψ - простір ...

Скачать
56774
10
8

... дозволяє отримати грубу модель структури або субструктури [ 3,4 ]. Розділ 4. Техніка експерименту і характеристика методів проведення дослідження 4.1 Синтез твердих розчинів LnBa2Cu3O7 та LnxLa1-xBa2Cu3O7 (де Ln = Gd, Ho) Зразки полікристалічних розчинів LnBa2Cu3O7 (де Ln = Gd, Ho) були синтезовані твердо-фазним методом. Як вихідні речовини використовувались купрум (II) оксид CuO, барій ...

Скачать
50037
1
10

... габаритність та точність. Розглянемо першу структурну схему, яка приведена на рисунку 2.1. Рисунок 2.1 – Перший варіант реалізації структурної схеми системи для визначення складу вихлопних газів автомобілів Позначення на схемі: V/ – датчик концентрації, який використовується для визначення концентрації вихлопних газів автомобілів; МХ – мультиплексор;  – аналого-цифровий перетворювач; ...

Скачать
35866
22
41

... 350 - 2000 ppm AS-MLC /AppliedSensor Inc. CO 0.5 - 500 ppm AS-MLK /AppliedSensor Inc. CH4 Від 0.01 до 4%   2. Сучасні датчики газів, та методи їх отримання   2.1 Нові матеріали та наноструктури – перспективна база елементів для датчиків газів   В зв’язку з інтенсивним розвитком виробництва поверхневих датчиків газів, досліджуються придатні для їх побудови сучасні напівпрові ...

0 комментариев


Наверх