2.4 Преимущества и недостатки получения трансгенных организмов

 

Едва ли в научном мире существует более животрепещущий предмет спора, чем вопрос использования генетически модифицированных организмов (ГМО). Причем, споры эти ведутся еще с начала 1970-х годов, как только была открыта технология рекомбинантных ДНК, позволившая получать организмы с инородными генами. Ученые в то время сразу же сообщили, что человек впервые получил полную власть над природой — создание абсолютно новых живых существ. Возможности открылись просто фантастические: лечение болезней, избавление мира от угрозы голода, выращивание культурных растений в сложных условиях и даже клонирование. Однако использовать на практике эти технологии начали лишь в середине 80-х с выпуска специализированных семян, из которых вырастали растения с улучшенными свойствами. В генный ряд картофеля «добавили» ген скорпиона, после его перестал есть колорадский жук, а в томаты и клубнику внедрили ген полярной камбалы — эти культуры перестали боятся морозов. Поработали ученые и над основными сельхозкультурами: кукурузой, пшеницей, соей, хлопком и рисом. После изменения генов они стали, устойчивыми к сорнякам, а, значит, перестали нуждаться в различного рода гербицидах, фунгицидах и прочей химии, соответственно, себестоимость продукции из таких растений упала в разы. Перспектива — полное избавление землян от голода, а сегодня, по подсчетам ООН, 950 миллионов людей во всем мире недоедают.

Однако против ГМО-продукции еще в середине 90-х началась самая настоящая информационная война — трансгены обвиняют не только во вреде для здоровья, но и предсказывают возможную экологическую катастрофу, связанную с их использованием [7].

Среди основных плюсов ГМО стоит выделить следующие (табл.5)

- Борьба с вредителями сельскохозяйственных культур. Потери урожая от насекомых-вредителей могут быть огромны, и как результат это приводит к разрушительным финансовым потерям для фермеров и голоду в развивающихся странах. Фермеры обычно используют тонны пестицидов ежегодно. Потребители не хотят, есть пищу, которая была обработана пестицидами из-за потенциальной опасности для здоровья, а стоки сельскохозяйственных отходов от чрезмерного использования пестицидов и удобрений могут отравить воду и причинить вред окружающей среде.

Выращивание ГМО продуктов, такие как кукуруза B. t. может помочь устранить применение химических пестицидов и уменьшить стоимость урожая.

- Устойчивость к гербицидам. Для некоторых культур, удаление сорняков с помощью физических средств, таких как прополка, не рентабельно, поэтому фермеры часто распыляют большое количество различных гербицидов (химические вещества — убийцы сорняков), чтобы уничтожить сорняки. Это долговременный и дорогостоящий процесс, т. к. он требует осторожности, чтобы гербициды не вредили выращиваемым сельскохозяйственным культурам или окружающей среде.

Создание сельскохозяйственных культур с помощью генной инженерии, устойчивых к одному очень мощному гербициду может помочь предотвратить нанесение ущерба окружающей среде за счет сокращения количества необходимых гербицидов. Например, «Monsanto» создала линию генетически модифицированных соевых бобов, устойчивых к гербициду Roundup. Фермеру выращивающему эти соевые бобы, теперь требуется только одна обработка гербицидом вместо нескольких, что ведет к снижению производственных затрат и количества опасных сельскохозяйственных отходов.

- Устойчивость к болезням. Есть много вирусов, грибков и бактерий, которые вызывают болезни растений. Ученые биологи работают над созданием растений с устойчивостью к этим болезням, внедренной генной инженерией. - Устойчивость к холоду. Неожиданный мороз может уничтожить чувствительные саженцы. Ген-антифриз от холода, извлеченный из рыбы, был внедрен в растения, такие, как табак и картофель. С помощью гена-антифриза, эти растения способны переносить низкие температуры, которые обычно убивают неизмененные саженцы. - Засухоустойчивость и устойчивость к соли. По мере того, как население мира растет и все больше земли используется для жилья, а не для производства продуктов питания, фермеры вынуждены выращивать сельскохозяйственные культуры в местах, ранее не подходящих для выращивания растений.

Создание растений, которые могут выдержать длительные периоды засухи или высокое содержание соли в почве и подземных водах поможет людям в выращивании зерновых культур в ранее «негостеприимных» местах.

- Качество питания. Плохое питание является общей тенденцией в странах третьего мира, где обнищавшие народы полагаются на одну сельскохозяйственную культуру, например, рис, как на основной продукт питания. Однако, рис не содержит достаточного количества всех необходимых питательных веществ. Генетически модифицированный рис может содержать дополнительные витамины и минералы, и за счет этого недостаток питательных веществ может быть скомпенсирован.

Например, слепота из-за дефицита витамина А является распространенной проблемой в странах третьего мира. Исследователи из Швейцарского федерального технологического института ботаники создали линию «золотого» риса, который содержит необычайно высокое количество бета-каротина (витамина А). Поскольку этот рис был профинансирован некоммерческой организацией Rockefeller Foundation, институт надеется обеспечить бесплатные поставки зерна «золотого» риса в любую страну третьего мира, которая обратится с такой просьбой. В планах ученых — разработка золотого риса, в котором будет также увеличено содержание железа.

в Европе, и поэтому этот питательный рис не сможет попасть на рынок.

- Фармацевтика. Лекарственные средства и вакцины часто являются дорогостоящими для производства, а иногда и требуют особых условий хранения, и не доступны в странах третьего мира.

Исследователи работают над созданием съедобных вакцин в помидорах и картофеле. Эти вакцины будет гораздо легче транспортировать и хранить, чем традиционные инъекционные вакцины.

- Фиторемедиация. Не все ГМО растения выращиваются в качестве сельскохозяйственных культур. Загрязнение почв и грунтовых вод по-прежнему является проблемой во всех частях мира.

Модифицированную конструкцию бактериального гена, кодирующего белок, который переносит и детоксицирует ртуть, использовали для трансформации табака, рапса, тополя [17].

Растения, такие как тополь были модифицированы с помощью генной инженерии для очистки загрязненной тяжелыми металлами почвы [11].

 

Несколько ведущих американских ученых, первым из которых поставил свою подпись Пол Берг, опубликовали в журнале "Сайенс" письмо, в котором призвали остановить работы по генной инженерии, до тех пор, пока не будут выработаны правила техники безопасности обращения с трансгенными организмами [9], которые, как полагалось, могут, помимо воли исследователей, иметь свойства, опасные для человека и среды его обитания.

Кроме опасений биологического характера, стали высказываться опасения нравственные, этические, философские и религиозные[10].

Стоит также отметить экономическую проблему, связанную с ГМ – культурами, а именно монополизацию рынка. Международные компании, в которых в настоящее время сосредоточена основная часть работ по генетической инженерии, стремятся к монопольному контролю за рынком генетически модифицированных сортов, а следовательно, и за рынком продовольствия. Так фирма «Monsanto» владеет 94% всех трансгенных растений, выращиваемых в мире. Монополизация в области биологического бизнеса, в том числе собственности на трансгенные сорта (эксклюзивные права на сою как культуру, семена и разновидности этого растения; создание частных банков генов и так далее), при котором получение прибыли является самодовлеющим фактором, может иметь крайне отрицательные последствия для всего мирового сообщества.

В общем же можно выделить следующие риски производства генетически модифицированных продуктов (табл. 4)

Среди представленных рисков можно выделить следующие:

- Опасность объединения видового состава и сортамента сельскохозяйственных культур. Одним из неприятных последствий широкого распространения ГМ – культур может стать сокращение генетического разнообразия не только дикорастущих, но и культурных растений на нашей планете;

- Термальные технологии. При посеве семян с признаками «термальности» удается получить лишь одно поколение растений, дающих хозяйственно полноценный товарный урожай; семена (плоды) последних оказываются либо невсхожими, либо погибают сразу после всходов.

- Вертикальный перенос генов реализуется посредством перекрестного опыления и половой гибридизации трансгенных растений и их сородичей. Реальная возможность такого переноса генов к дикорастущим сородичам будут способствовать увеличению селективных преимуществ сорных растений.

- Горизонтальный перенос трансгенов. Считается что существует реальная опасность спонтанного распространения селективных и маркерных генов (трансгенные растения – вектор-переносчик – эукариотный организм - реципиент) в популяции патогенных микроорганизмов посредством их спонтанного переноса от трансгенных растений.

- Встраивание трансгена может приводить к нежелательным воздействиям на геном организма. Встраивание трансгена также может нарушить первичную структуру какого – либо хозяйственного гена и, тем самым вызвать его инактивацию. В последствии это может привести к мутации.

Табл.4 Риски связанные с получением ГМ – культур

- Трансген может приводить к незапланированным изменениям метаболизма клетки. Некоторые ключевые ферменты обладают широкой субстратной специфичностью. Поэтому предполагается, что введение трансгенов может привести к появлению в клетке веществ, которые могут стать подходящими субстратами для мало специфичных ферментных систем, а также к реактивации метаболических путей, потерявших в процессе эволюции свое значение для поддержания жизнедеятельности организма.

- Проблемы безопасности селективных и маркерных генов. Селективные и маркерные гены представляют собой важный молекулярный инструмент для отбора клеток, содержащих целевой ген и для анализа его экспрессии полученных таким образом трансгенных растений. Опасения могут вызывать: токсичность ДНК селективного или маркерного гена; токсичность белкового продукта; возможность переноса к патогенным микроорганизмам.

В целом существует два подхода к оценке потенциального риска генетически модифицированных организмов. Первый подход основан на оценке того, насколько опасен непосредственно целевой продукт (или результат) генетической модификации. И не важно, каким именно методом создана генетическая модификация: традиционной селекцией скрещиваниями или генной инженерией. При этом принципиально, что если продукт генетической модификации сам по себе безопасен и если рецепторный организм исходно полагается безопасным, то вероятность , что из – за данной генетической модификации организм может стать опасным, не рассматривается вообще (игнорируется). Такой подход в оценке риска называется «ориентированным на продукт» генетической модификации.

Второй подход основан на всесторонней оценке того, не приобрел ли исходно безопасный реципиентный организм в процессе генетической модификации каких – либо потенциально опасных свойств. Этот подход принято называть «ориентированными на процесс»[2].

Отмеченные выше факты неблагоприятного воздействия трансгенов на организм человека и животных не свидетельствуют о порочности технологии создания ГМО как таковых. Стоит обратить внимание на актуальность проблемы анализа пищевых и прочих рисков использования ГМО, на необходимость выработки норм экспертизы и тестирования новых сортов, с учетом уже известных рисков и постоянному жесткому контролю ГМО по исходным, не модифицированным сортам. Безусловно, оценка таких рисков всегда будет относительна – любые употребляемые нами продукты питания способны осуществлять разнообразные воздействия на организм, а в процессе производства любой пищевой продукции происходит вмешательство человека в окружающую природу. Имеющиеся данные [12],[13] показывают, что есть уже немало доказанных случаев реальных пищевых рисков, связанных с использованием генетически модифицированных организмов по сравнению с исходными организмами. Однако в условиях монополизации и производства семенного материала, и его экспертизы одной или несколькими крупными биотехнологическими корпорациями трудно ожидать объективных оценок этих рисков. В результате, проблема «регуляции рисков» может превратиться в проблему «рисков регуляции»


Информация о работе «Генно-инженерная технология»
Раздел: Биология
Количество знаков с пробелами: 45235
Количество таблиц: 3
Количество изображений: 4

Похожие работы

Скачать
30392
0
0

... десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. В 90-е годы продукты биотехнологических исследований стали появляться на коммерческом рынке. Длительный инкубационный период в развитии биотехнологии ...

Скачать
26379
0
0

... . Генно-инженерные технологии позволяют легко увеличивать промышленное производство ферментов. Ферменты находят все более широкое применение как биокатализаторы в фармацевтическом производстве. Биокаталитические технологии. Направленная модификация с помощью методов генной инженерии открывает возможности трансформации структуры ферментов таким образом, что они приобретают качественно новые ...

Скачать
22417
0
0

... с помощью биотехнологических процессов, комбинаторной химии, и новые мишени, которые идентифицируются в процессе изучения геномов. Это дает возможность отбирать молекулы, обладающие новыми биологическими и физиологическими свойствами, которые и будут выполнять роль лекарств. Прежде всего, обратимся к медицинской ветви биотехнологии. Рассматривая различные классы соединений, используемые в ...

Скачать
21391
1
0

... 10% всех структурных генов человека Быстро набирающие темпы исследования по генной вакцинации Набирающая темпы и расширяющаяся по номенклатуре генная терапия человека с массовой развивающейся базой и подготовкой новых возможностей Создание и разработка различных технологий уничтожения любых заданных клеток на животных моделях. Разработка технологий получения искусственных биологических ...

0 комментариев


Наверх