1.4 ТЕКТОНИКА

Туймазинское нефтяное месторождение приурочено к Туймазинской и Александровской складкам, образующим с Бавлинским поднятием Туймазинский вал северо-восточного простирания. Туймазинский вал осложняет юго-восточную часть южной вершины Татарского свода.

Сопоставление структурных карт по отдельным стратиграфическим горизонтам показывает, что структурный план площади в целом сохраняется от девонских отложений до пермских.

Амплитуда поднятия по различным горизонтам также мало отличается. Наблюдается лишь некоторое усиление структуры с глубиной. В пределах замкнутых изогипс амплитуда поднятия в карбоне колеблется от 45 до 50 м, а по кровле репера "Верхний известняк" составляет 60 м.

Туймазинская структура вырисовывается в виде обширной (36 км х 20 км) асимметричной брахиантиклинальной складки северо-восточного простирания, оконтуривающейся стратоизогипсой - 1480м. Северо-западное крыло ее пологое - угол падения порядка 0-12', 0-14'. В присводовой части и на переклиналях углы падения увеличиваются от 0-17' до 0-20'.

Юго-восточное крыло складки осложнено резким изгибом слоев в районе первого ряда эксплуатационных скважин. Углы падения здесь достигают - 4-30'. В юго-западном направлении наблюдается выполаживание этого резкого склона. В районе седловины, отделяющей Туймазинское поднятие от Александровского, углы падения не превышают 2-10', а на юго-восточном крыле Александровского поднятия - 1-25'.

К юго-востоку одноименное крутое крыло переходит в обширную террасу. Эта терраса протягивается вдоль всего Туймазинского поднятия и на юго-западе в районе Александровской площади переходит в неглубокий прогиб. Последний отделяет Александровское поднятие от Южно-Александровского поднятия. С юго-востока терраса окаймляется крутым склоном прогиба, отделяющего Туймазинскую структуру от структур Серафимовско - Балтаевского вала.

Северо-западное крыло Туймазинского поднятия и указанная терраса осложнены целым рядом небольших куполовидных вздутий и понижений типа седловин, ориентированных преимущественно в широтном и северо-восточном направлениях. Сводовая часть собственно Туймазинского поднятия окон оконтуривается изогипсой - 1454м и осложнена большим количеством мелких пологих куполов. Александровская площадь на этих отметках представляется в виде двух небольших куполов с амплитудой не более 5-8 м, разделенных неглубокой седловиной.

1.5 НЕФТЕГАЗОНОСНОСТЬ И ВОДОНОСНОСТЬ

Признаки нефти выявлены в разрезе от девонских до пермских отложений включительно. Самым нижним нефтеносным горизонтом является песчаный пласт Д-IV, в котором обнаружена небольшая залежь нефти на Александровской площади. Следующим нефтеносным горизонтом выше по разрезу является песчаный пласт Д-III, в котором небольшие залежи обнаружены в наиболее повышенных участках структуры на Туймазинской площади.

Одним из основных нефтеносных горизонтов являются песчаники пласта Д-II, которые на Туймазинской площади содержат крупную залежь нефти (12*8 км).

Основной объект разработки Туймазинского месторождения приурочен к песчаникам, пласта Д-I пашийского горизонта, нефтенасыщенным на Туймазинском и Александровском площадях.

Нефтепроявления промышленного значения выявлены в карбонатных осадках фаменского яруса, в основном в отложениях верхне-фаменского подъяруса.

Промышленная нефть имеется в верхней части пористых известняков турнейского яруса. Нефть турнейского яруса удельного веса 0,894 г/см3, содержание серы - 3%.

К песчаникам бобриковского горизонта на Туймазинской и Александровской площадях приурочены залежи нефти, которые являются самостоятельными объектами разработки. Песчаники этого горизонта имеют линзовидное распространение. Нефть имеет удельный вес 0,885 г/см3, содержание серы до 3,81%.

Признаки нефти обнаружены в верхней части турнейских тонкопористых и кавернозных известняков, в артинских отложениях тонкозернистых и кавернозных известняков, местами содержится газ. Залежи газа имеют локальный характер, отличаются небольшим дебитом и весьма ограниченными запасами.

В основании кунгурского яруса залегают оолитовые известняки, насыщенные жидкой газированной нефтью. Однако, получить промышленный приток нефти из этих известняков не удалось.

Следует отметить, что нефтеносность карбонатных отложений, мощность которых составляет почти 80% разреза осадочной толщи палеозоя, изучена слабо.

В настоящее время эксплуатируются пласты Д-I, Д-II, Д-III, Д-IV, песчаники бобриковского горизонта, известняки верхне-фаменского подъяруса и турнейского яруса.

Водоносные горизонты в девонских отложениях приурочены к живетскому, франскому, фаменскому ярусам.

Воды всех девонских пластов от Д-V до Д-I характеризуются одним и тем же составом. Воды хлоркальциевые сильно минерализованные, практически бессульфатные. Характерной особенностью девонских вод является значительное содержание в них окисного железа и повышенное содержание брома.

Общая минерализация пластовых вод девона достигает 815 мг/экв/100г. Удельный вес колеблется в пределах 1,187 - 1,19 г/см3. По классификации Пальмера состав вод выражается:

первая соленость - 62-65%

вторая соленость - 35-38%

вторая щелочность - 0,01-0,09%экв.

Среди анионов преобладает содержание ионов хлора 407 мг/экв/100г. Из катионов значительно содержание 259 мг/экв/100г.

Воды фаменского яруса представляют собой также высокоминерализованные рассолы. Характерной особенностью является повышенное содержание иона. Установлено содержание сероводорода.

Воды турнейских, бобриковских, тульских отложений нижнего карбона характеризуются по сравнению с девонскими водами меньшей степенью метаморфизма. Они также высокоминерализованы и по солевому составу относятся к хлоркальциевому типу, а по преобладанию составляющих компонентов к хлорнатриевому. Обнаруживается наличие сероводорода.

В процессе проводки скважин отмечается наличие водоносных горизонтов в окском и сорпуховском подъярусов нижнего карбона. Для этих вод характерно резкое увеличение концентрации сульфатных ионов.

Воды артинских отложений всюду проявляют себя интенсивно.

В скважинах с низкими отметками рельефа наблюдается переливание воды через устье. Воды относятся к типу сульфатонатриевых.

Воды кунгурского яруса относятся также к типу сульфатонатриевых вод.

Водоносные горизонты встречаются также выше по разрезу в отложениях Уфимской свиты, Казанского и Татарского ярусов.



Информация о работе «Определение удельного электрического сопротивления горных пород методом бокового каротажа»
Раздел: Геология
Количество знаков с пробелами: 66725
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
122005
6
4

... нового типа аппаратуры - автономного прибора акустического каротажа АК-Г, было принято решение о его испытании и широком применении при геофизических исследованиях в горизонтальных скважинах Федоровского месторождения Западной Сибири. Автономный скважинный прибор акустического каротажа АК-Г предназначен для измерений параметров распространения продольной и поперечной волн в скважинах, включая ...

Скачать
122174
0
0

... собой объем газа, приведенный к нормальным условиям, который содержится в единице объема породы) и содержание предельных углеводородных газов. Одновременно с геохимическими исследованиями регистрируют продолжительность бурения 1м скважины и расход бурового раствора. Такой комплекс исследования называют газовым каротажем. Зная эти величины, можно разделять перспективные пласты на газосодержащие, ...

Скачать
65309
34
29

... на скорость бурения. Возникает двойная необходимость регистрации технологических параметров – для оптимизации бурения и для решения геологических задач. Назначение наддолотного модуля, устройство и работа модуля Модуль (рис.3.10.) предназначен для измерения технологических и геофизических параметров непосредственно около долота, в процессе бурения гидравлическими забойными двигателями и передачи ...

Скачать
11482
0
2

... независимо от вида регистрации естественного или искусственно созданного поля ионизирующих излучений. В зависимости от вида измеряемого параметра возможно выделение трёх вариантов систем метрологического обеспечения аппаратуры РК в ГС: 1) МО измерений характеристики полей ионизирующих излучений (потоки нейтронов или гамма-квантов, пространственное, временное и энергетическое распределение); 2) МО ...

0 комментариев


Наверх