4. Расчет и конструирование колонны подвала
При выполнении статического расчета вручную в курсовой работе усилия М и N в колонне подвала среднего ряда с некоторыми упрощениями можно определить следующим образом.
В начале находим величину грузовой площади покрытия и каждого из перекрытий, нагрузка с которой передается на колонну
где l - пролеты ригелей, l = 5,7 м;
B - шаг колонн, В = 5,4 м.
Затем определяем расчетные нагрузки.
Нагрузка на колонну от веса перекрытий
где q1 - полная расчетная нагрузка на 1 погонный метр ригеля, q1 =54,44кН/м;
р - временная расчетная нагрузка на 1 м2 перекрытия (см. табл. 1), р = 2,28 кН/м; nпер - число перекрытий в здании, nпер = 3.
Нагрузка на колонну от веса покрытия
где g1 - расчетная нагрузка от веса пола (табл. 1), g1 = 1,54 кН/м;
gу, gс - объемные массы соответственно утеплителя и стяжки, gу = 300 кг/м3; gс = 1800 кг/м3;
dу, dс - толщина соответственно утеплителя и стяжки, dу = 15 см, dс = 2 см;
qк - нагрузка от веса рулонной кровли, qк = 20 кг/м2;
gfy,gfc,gfк - коэффициенты надежности по нагрузке соответственно утеплителя, стяжки и кровли, которые здесь равны 1,3.
Нагрузка от веса колонны
где bк - предварительный размер поперечного сечения колонны, bк = 0,3м; hпод, hэт - высота соответственно подвала и этажа, hпод = 2,8 м, hэт = 3,3 м; n - число этажей, n =3;
g - объемная масса железобетона, g = 2500 кг/м3 (25 кН/м3); gf- коэффициент надежности по нагрузке gf = 1,1.
Постоянная расчетная нагрузка на колонну
Временная расчетная нагрузка на колонну
где S0 - нормативный вес снегового покрова на 1 м поверхности земли, принимаемый по табл. 1.7 [6] в зависимости от района строительства, для II района строительства S0 = 1,2кПа;
m- коэффициент зависящий от вида перекрытия, m = 1
Постоянная расчетная продольная сила в колонне подвала
Определение изгибающих моментов в колонне можно выполнить из условия, что при полужестких стыках с ригелями максимальный момент в колонне возникает при загружении временной нагрузкой одного из двух ригелей, опирающихся на колонну, причем момент воспринимается только колонной. В этом случае
,
где R - опорная реакция ригеля от временной нагрузки р (табл. 1),
R = 0,5*р*В* l = 0,5*2,28*5,4*5,7 =35,1кН
е1 - эксцентриситет опорной реакции при принятых размерах колонны е1 = 25 см.
Конструктивный расчет колонны выполняем как внецентренно сжатого элемента прямоугольного профиля с симметричной арматурой. Расчетную длину колонны принимаем равной высоте подвала, l0 = 2,8 м. Принимаем класс бетона колоны В35, продольной рабочей арматуры А400.
По таблице 3.4 [6] определяем расчетное сопротивление бетона осевому сжатию, Rb = 14,5 МПа, по таблице 3.5[6] модуль деформации бетона Eb = 27000 МПа.
По таблице 5.8[5] находим расчетное сопротивление продольной арматуры осевому растяжению, Rs = 355 МПа и осевому сжатию Rsc = 355 МПа, по таблице 3.10[6] модуль деформации стали Es = 200000 МПа.
Принимаем размеры поперечного сечения колонны b = h = 30 см.
Рабочая высота сечения h0 = h – a = 30 – 3 = 27 см.
Критическая продольная сила
Случайный эксцентриситет еа принимаем равным наибольшему из трех значений: еа = l0/600 = 280/600 = 0,47 см, еа = h/30 = 30/30 = 1 см и еа = 1 см.
Расстояние от точки приложения силы N до центра тяжести растянутой арматуры
,
начальный эксцентриситет
Определяем значение следующих величин:
ω0 = 0,85-0,008*Rb = 0,85-0,008*14,5 = 0,734
,
, a’ = 3 см, ,
,
При an < xr (1.458 < 1.5) площадь поперечного сечения арматуры определяем по формуле
,
Требуемую площадь поперечного сечения арматуры определяем, исходя из минимального процента армирования,
По сортаменту(таблица 3.13[6]) подбираем 3 стержня диаметром 22 мм с площадью сечения As = As’ = 11,4 см2.
Определяем процент армирования
Поперечную арматуру (хомуты) устанавливаем без расчета. В сварных каркасах диаметр хомутов принимают равным 0,3 диаметра продольной арматуры(0,3*22 = 6,6 мм), шаг хомутов - не более 20 диаметров продольных стержней (20*22 = 440 мм), но не более удвоенной ширины колонны (2*300 = 600 мм) и не более 500 мм. Поперечную арматуру выполняем из стали класса А 240 Æ8 мм с шагом 400 мм.
Рис. 9. Армирование колонны
Рис. 10. Стык колонн с ванной сваркой выпусков арматуры
Расчет стыка выполняют для двух стадий его работы:
- для стадии монтажа проверяют прочность бетона центрирующего выступа на местное смятие при незамоноличенном стыке;
- для стадии эксплуатации при замоноличенном стыке подбирают параметры косвенного армирования в зоне анкеровки продольной арматуры, где она частично или полностью не включена в работу.
В курсовой работе выполним расчет стыка для стадии эксплуатации с некоторыми упрощениями, основанными на следующих исходных предпосылках:
1. Работа продольной рабочей арматуры в зоне ее анкеровки при расчете прочности не учитывается.
2. На основании предыдущих расчетов устойчивость колонн в полной мере обеспечивается бетоном и продольной арматурой.
3. Изгибающие моменты в колонне не велики, в месте стыка они близки к нулю; их влиянием на неравномерность распределения напряжений по сечению можно пренебречь.
4. Так как l0/h < 20 случайные эксцентриситеты можно не учитывать.
С этих позиций расчет стыка выполняем следующим образом.
Вначале назначаем шаг сеток косвенного армирования S в пределах 60-150 мм, но не более h/3 = 30/3 = 10 см (рис. 10). Сетки устанавливаем у торца колонны на длине l которая должна быть не менее десяти диаметров продольной арматуры (10*22 = 220 мм) и не менее размера поперечного сечения h = 30 см. Размер ячеек а1 назначаем в пределах 45-100 мм, но не более h/4 = 300/4 = 75 мм. Принимаем S = 100 мм, l = 300 мм, а1 = 60 мм. Сетки выполняем из арматуры класса А400, диаметр определяем расчетом.
Расчетная нагрузка на колонну первого этажа
Требуемое расчетное сопротивление бетона сжатию, усиленного косвенным армированием
где Aef - площадь поперечного сечения колонны, ограниченная
контуром сетки, без учета площади подрезок, Aef = 5*a2 = 5*52 = 125 см2
Необходимый коэффициент косвенного армирования
Требуемая площадь одного стержня сетки
где n и l1- соответственно число стержней одного направления в
сетке и длина стержня.
По сортаменту подбираем диаметр стержней сетки 14 мм, As = 1,539 см2.
Консоли колонны ввиду небольшой высоты устраиваем с жесткой арматурой, состоящей из двух сжатых и двух растянутых стержней класса А400 и вертикальных ребер-пластин, соединяющих эти стержни.
Рис. 11. Конструкция консолей колонны
Их расчет выполняем как изгибаемого элемента с двойной арматурой.
Изгибающий момент в консоли
где Q- опорное давление ригеля, равное максимальной
поперечной силе (см. статический расчет ригеля), Q = 168,6 кН;
С - расстояние от грани колонны до точки приложения силы Q (С =10 см).
Требуемая площадь продольной арматуры
где zs - плечо внутренней пары сил: zs = 10 см.
По сортаменту подбираем 2 стержня Æ18 мм. На срез от действия поперечной силы консоль рассчитывают без учета работы бетона, как стальную конструкцию. В курсовой работе этот расчет не выполняем и конструктивно принимаем толщину вертикальных ребер d = 10мм.
... 20,66) · 100 = 314,57 · 105кН · м 5. Проектирование колонны первого этажа 5.1 Конструктивная схема Колонны многоэтажных промышленных зданий состоят из сборных ж/б элементов длиной, кроме элемента 1-го этажа, равной высоте этажа. Для опирания ригелей перекрытия колонны снабжены консолями. Стыки элементов колонн для удобства работ по соединению устраиваются на расстоянии 500—800 мм выше ...
... направлениях рабочей арматурой 15Æ10 АI с шагом s=14 см. см2. Процент армирования расчётного сечения 6. Расчёт и конструирование монолитного перекрытия 6.1 Компоновка ребристого монолитного перекрытия Проектируем монолитное ребристое перекрытие с продольными главными балками и поперечными второстепенными балками. При этом пролёт между осями рёбер равен (второстепенные балки ...
... 0,75см2. Принимаем стержни Ø10А-I (Asw1 = 0,785см2). 7. Расчет предварительно напряженной сегментной фермы пролетом L = 18 м 7.1 Данные для проектирования Требуется запроектировать сегментную ферму пролетом 18 м. Шаг ферм 6 м. Покрытие принято из железобетонных ребристых плит покрытия размером в плане 3х6 м. Коэффициент надежности по назначению γn = 0,95. Ферма проектируется с ...
... с учетом существующего рельефа местности, что обеспечивает отвод поверхностных вод от проектируемого жилого дома и соседних с ним по лоткам автодорог. РАСЧЕТНО-КОНСТРУКТИВНАЯ ЧАСТЬ Расчет и конструирование многопустотной панели перекрытия Исходные данные на проектирования Требуется рассчитать и законструировать сборную железобетонную конструкцию междуэтажного перекрытия жилого здания ...
0 комментариев