Министерство образования и науки Республики Казахстан

СЕМИПАЛАТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени ШАКАРИМА

МАГИСТРАТУРА ФЗ и ЗОС

КАФЕДРА ХИМИИ И ЭКСПЕРТИЗЫ


Курсовая работа

Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов

Исполнитель Сальменбаев С.Е.

Научный руководитель Кудайбергенов С.Е.

Допущена к защите

Зав. Кафедрой Яшкарова М.Г.

СЕМИПАЛАТИНСК - 2008


РЕФЕРАТ

 

Курсовая работа содержит: 40 страниц, 9 рисунков, 8 таблиц, приложений, список литературы включает 14 наименований.

Тема: «Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов»

Результатом исследования является полиамфолит бетаиновой структуры поли (карбоксиэтил 3-аминокротонат) (ПКЭАК) синтезированный в институте полимерных материалов и технологий г. Алматы.

Цель работы: исследование взаимодействия полиамфолита с ионами металлов и изучение возможности его практического применения.

Работа выполнена на кафедре химии и экспертизы Семипалатинского

Государственного университета имени Шакарима.

В работе был использован метод потенциометрического титрования.

Были исследованы:

1. Исследование взаимодействия линейного полиэлектролита с ионами двухвалентных металлов: Ca, Sr, Ni, Co, Cd, Pb, Zn, Cu.


СОДЕРЖАНИЕ

Введение

Перечень сокращений, символов и обозначений

1.Теоретическая часть

1.1 Комплексы водорастворимых полимеров с различными классами соединений

1.2 Комплексы полимеров с низкомолекулярными соединениями

1.2.1 Комплексы полимер – ион металла

1.3 Амфотерные полиэлектролиты

1.4 Применение комплексов полимер – металл в катализе

2.Методическая часть

2.1 Характеристика исходных веществ

2.2 Методика исследования

3. Экспериментальная часть

3.1.Результаты и обсуждение

4.Заключение

5.Список использованных источников

6.Приложения


Введение

 

Актуальность темы

Известно, что число полиамфолитов и полимерных бетаинов весьма ограничено. Линейные и слабосшитые полимерные бетаины, содержащие кислотные и основные функциональные группы, представляют большой интерес, так как они наиболее близки по свойствам к природным полимерам. Исследование полиамфолитов и их взаимодействий с самыми различными соединениями (комплементарными макромолекулами, белками, ионами металлов, лекарственными веществами и т.д.) интересно с точки зрения моделирования процессов, протекающих в биологических системах, а также возможного использования в различных процессах – в процессах извлечения ионов металлов, разделения, очистки и концентрирования белков, иммобилизации и контролируемом высвобождении лекарственных веществ и т.д.

Данная работа посвящена исследованию процессов комплексооборазования поли (карбоксиэтил 3-аминокротоната) с ионами двухвалентных металлов.

Цель работы

1) Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов потенциометрическим титрованием.

Научная новизна темы

Научная новизна данной работы в том, что исследуемый объект является совершенно новым полиэлектролитом, ранее еще не исследованным. Полученные результаты могут быть использованы при извлечении металлов из природных и сточных вод, создании полимерных катализаторов, биомедицинских препаратов.

Достоверность полученных данных

Полученные данные подтверждают комплексообразование полиамфолита с ионами двухвалентных металлов.


ПЕРЕЧЕНЬ СОКРАЩЕНИЙ, СИМВОЛОВ И ОБОЗНАЧЕНИЙ.

 

ПКЭАК – поли-карбоксиэтил 3-аминокротонат

ПМК – полимер-металлические комплексы

ИЭТ – изоэлектрическая точка

ПЭГ - полиэтиленгликоль

ТПМК – тройные полимер – металлические комплексы

ПЭК – полиэлектролитные комплексы

ПА - полиамфолит

ПЭ – полиэлектролит

П4ВП – поли-4-винилпиридин

ПВПД – поливинилпиролидон

ВМС: высокомолекулярные соединения.

Me: металл.

др.: другое.

ИК: инфракрасный.

ПМК: полимер металлические комплексы.

ИОС: ионно-обменные смолы.

ИПК: интерполимерные комплексы.

х.ч.: химически чистый.

 


1.Теоретическая часть

 

1.1 Комплексы водорастворимых полимеров с различными классами соединений

Исследование взаимодействий комплементарных макромолекул и продуктов этих реакций – полимерных комплексов представляет одну из важнейших проблем химии и физики полимеров и молекулярной биологии [1-3].

Комплементарными называются разнородные макромолекулы, содержащие функциональные группы, которые способны к специфическим взаимодействиям, а геометрическое строение цепей не создает препятствий для возникновения достаточно большого числа межмолекулярных связей. Это могут быть водородные связи, электростатические, ион-дипольные, ван-дер-ваальсовые и гидрофобные взаимодействия.

Интерес к данной проблеме связан с тем, что взаимодействие комплементарных структур и продукты их ассоциации играют исключительно важную роль в живых организмах (это образование двойных и тройных спиралей комплексов полинуклеотидов, надмолекулярных структур клеток вирусов, комплексов фермент-субстрат, антиген-антитело). Классическим примером кооперативного интерполимерного комплекса является двойная спираль из комплементарных цепей ДНК. Изучение подобных взаимодействий, но с участием синтетических комплементарных макромолекул делает возможным моделирование процессов, протекающих в биологических системах, на сравнительно простых полимерных объектах, т.е. позволяет осуществить подход к биологическим системам и протекающим в них процессам со стороны химии.

С другой стороны, продукты взаимодействия комплементарных макромолекул – полимерные комплексы являются, по существу, новыми полимерными материалами, хотя и получены в большинстве случаев из известных полимеров при простом смешении растворов взаимодействующих компонентов в общем растворителе. Это открывает новые пути рационального использования известных полимеров и сам процесс комлексообразования можно рассматривать как способ модификации традиционных полимеров.

По типу специфических взаимодействий, обуславливающих комплексообразование, различают комплексы, обусловленные ван-дер-ваальсовыми взаимодействиями (например, комплексы стереоизомеров полиметилметакрилата), электростатическими взаимодействиями (полиэлектролитные комплексы), комплексы с водородными связями (комплексы неионогенных полимеров с поликарбоновыми кислотами), комплексы с координационными связями (например, комплексы полимер-металл).

Существует большой класс так называемых молекулярных комплексов, которые являются продуктами невалентных взаимодействий, в основном, неионогенных полимеров – полиэтиленгликоля (ПЭГ) с резорцином, поливинилпиролидона (ПВПД) с фенолами, высокомолекулярные соединения включения полиэтиленгликоля с мочевиной, тиомочевинной, пергидротрифениленом, солям ртути, поливинилового спирта (ПВС) с йодом и боратами. К молекулярным комплексам относятся комплексы, образующиеся между гетероатомом (O, N, S, P)-содержащими полимерами и ионами щелочных и щелочно-земельных металлов. Эти комплексы стабилизированы ион-дипольными взаимодействиями. Наряду с основным взаимодействием, обуславливающим образование полимерного комплекса, не менее важную роль играют и другие взаимодействия. Например, в стабилизации полиэлектролитных комплексов с водородными связями большую роль играют гидрофобные взаимодействия.

В процессах комплексообразования полимеров могут участвовать различные классы соединений: комплементарные макромолекулы (интерполимерные комплексы), поверхностно-активные вещества (комплексы полимер-ПАВ), ионы металлов (комплексы полимер-металл), красители (комплексы полимер-краситель), лекарственные вещества, органические молекулы и т.д.[4-9].

Полимерные комплексы могут быть получены несколькими способами. Наиболее распространенный из них – это смешение растворов готовых взаимодействующих компонентов в общем растворителе. В результате образуются так называемые комплексы смешения, свойства которых наиболее детально изучены в растворах[4-8]

Полимерные комплексы могут быть получены методом матричной полимеризации. При этом образуются более высокоориентированные полимерные комплексы, поскольку матрица контролирует скорость образования «дочерней цепи», её длину, химическое строение и структуру. Полимерный комплекс образуется лишь при достижении некоторой критической степени полимеризации «дочерней цепи», после чего растущая цепь ассоциируется с матрицей и начинается собственно матричная полимеризация.

В последние годы разработан новый способ получения полимерных комплексов в дополнение к традиционным (смешением растворов готовых комплементарных молекул или реакцией матричной полимеризации). Способ заключается в осуществлении реакции коплексообразования на границе раздела двух несмешивающихся жидкостей, например, бензол-вода, в которой растворены взаимодействующие компоненты[12-14]. Эти несмешивающиеся жидкости являются перекрестно-селективными растворителями для исходных компонентов. Полимерные комплексы образуются в виде тонких пленок на границе раздела фаз.

Факт комплексообразования в каждой системе устанавливается совокупностью физических и физико-химических методов. Самые различные методы – потенциометрия, кондуктометрия, турбидиметрия, вискозиметрия, калориметрия, седиментация, двойное лучепреломление, светорассеяние, высокоразрешающая ЯМР-спектроскопия, хроматография, ИК- и УФ-спектроскопия, флуоресценция, электронная микроскопия, рентгеноструктурный анализ и другие могут быть использованы для исследования образования, состава и свойств полимерных комплексов.

Экспериментальные результаты могут быть представлены в виде кривых титрования или диаграмм свойство-состав. Экстремумы или точки перегиба на кривых титрования указывают на образование комплексов и их состав. Диаграммы свойство-состав бинарной смеси не подчиняются правилу аддитивности, имеют экстремальный характер и обнаруживают особые точки, что согласно основам физико-химического анализа, свидетельствует об образовании индивидуального соединения (полимерного комплекса), имеющего определенный состав. На седиментограммах поликомплексов наблюдается один пик, однозначно подтверждающий, что полимерный комплекс является индивидуальным соединением, а не смесью исходных взаимодействующих компонентов. В том случае, когда комплексообразования в системе не происходит и комплексы не образуются, кривые титрования не имеют особых точек, а зависимости свойство-состав не подчиняются правилу аддитивности.

Полимерные компоненты, участвующие в реакциях комплексообразования, могут быть гомополимерами и сополимерами (регулярными, статистичными, блочными). Они могут нести положительный заряд (поликатионы), отрицательный заряд (полианионы), оба типа зарядов (полиамфолиты), или быть неионогенными.

 


Информация о работе «Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов»
Раздел: Химия
Количество знаков с пробелами: 35487
Количество таблиц: 40
Количество изображений: 9

0 комментариев


Наверх