1.  Введение.

Значительную роль в использовании природных энергетических источников играют транспортные средства, потребляющие около трети всей добываемой в мире нефти, причем из всех видов транспорта наиболее энергоемким является автомобильный. Использование в автомобилях углеводородных топлив нефтяного происхождения сопровождается выбросом в атмосферу огромного количества вредных веществ. В результате на автомобильный транспорт приходится от 39 до 63% загрязнения окружающей среды, масштабы которой глобальны – воздух, суша и вода.

Традиционный подход к решению энерго-экологических проблем автомобилизации заключается в улучшении конструкции существующих двигателей внутреннего сгорания и создании более совершенных энерго- силовых установок нового типа при использовании более или менее обычных углеводородных топлив. В первом случае основное внимание уделяется повышению экономичности и снижению токсичности автомобилей путем сложной коррекции рабочего процесса в двигателе с целью обеспечения максимальной полноты сгорания топлива на всех рабочих режимах.

Новые транспортные двигатели, разработанные к настоящему времени, включают электрические силовые установки и тепловые двигатели внутреннего и внешнего сгорания с нетрадиционными рабочими процессами. К последним относят поршневые двигатели с послойным распределением заряда, газотурбинные, паровые и роторные двигатели, а также двигатели Стирлинга. Некоторые из этих двигателей, в частности двигатели Стирлинга, в принципе могут обеспечить возможность создания малотоксичного автомобиля на обычных топливах, удовлетворяющего будущим жестким нормам.

Большой интерес представляют электрические силовые установки использующие электрохимические источники энергии – аккумуляторные батареи и топливные элементы.

За последние несколько лет построено большое количество опытных образцов электромобилей. В электромобилях более перспективно применение топливных элементов, конвертирующих электрическую энергию непосредственно из топлива без промежуточной стадии. Благодаря успехам в этой области в последние годы удельная мощность водородо – кислородных топливных элементов увеличилось до 300 Вт/ч, а срок их службы повысился до нескольких лет при периодическом использовании. Основная проблема применения топливных элементов этого типа – трудность хранения водорода на автомобиле. Объемно-массовые показатели наиболее приемлемого варианта аккумулирования водорода в виде гидридов пока еще неудовлетворительны и находятся на уровне разрабатываемых электрохимических батарей. Поэтому практический интерес представляет применение топливных элементов с кислым электролитом, использующих в качестве рабочего тела смеси газов: водорода, метана, окиси углерода и др. эти элементы могут работать на жидких углеводородных топливах, в частности на метаноле, благодаря чему энергосиловые установки на их основе по удельной мощности приближаются к современным автомобильным двигателям.

Альтернативные приводы и источники энергии, не наносящие ущерба окружающей среде, называют надеждой завтрашнего дня. Топливные элементы считаются самым оптимальным решением энергетических проблем: из водорода и кислорода вырабатывается электрический ток, который используется для привода двигателя. В результате электрохимического процесса, помимо электрической энергии, образуются только тепло и водяной пар [ ].

Для промышленного получения водорода было предложено большое количество различных способов. Однако перечислять все способы и патенты по производству водорода нет нужды; это представляет главным образом исторический интерес, поскольку большинство из предложенных способов вообще не было осуществлено в промышленном масштабе, а в практических условиях оправдали себя лишь некоторые из них.

Основные методы получения водорода в промышленности можно сгруппировать в следующие: а) химические методы; б) электрохимические методы; в) физические методы.

К химическим методам относятся те процессы, в которых исходным веществом для получения водорода является химическое соединение (или ряд химических соединений) водорода с другими элементами, и откуда водород получается при помощи тех или иных химических реакций.

Под электрохимическими следует понимать те методы, где выделение водорода из его химических соединений осуществляется разложением последних под действием электрического тока.

К физическим методам следует причислять те процессы, в которых исходное сырьё (газовая смесь) уже содержит свободный водород и требуется тем или иным физическим путём (например, фракционной конденсацией) освободить его от остальных компонентов.

Химическими методами водород в промышленности получается следующими путями.

1)  Из водяного пара восстановлением его железом (железо - паровой способ) или углеродом (газификация кокса, каменных и бурых углей и других видов твёрдого топлива на водяной газ).

2)  Из газообразных углеводородов термическим разложением или конверсией с окислителями (Н2О, О2, СО2).

3)  Из жидких углеводородов термическим разложением или неполным окислением (газификацией) с применением в качестве окислителей Н2О и О2.

Необходимо отметить, что при получении водорода из углеводородов с применением в качестве окислителя водяного пара последний является дополнительным источником водорода.

Следует также указать, что при химических методах (за исключением способов железо – парового и термического разложения) процесс получения водорода ведётся обычно в две ступени. При этом на первой ступени получают, как правило, смесь Н2 + СО (водяной газ). В случаях необходимости иметь чистый водород (без СО) водяной газ направляют на следующую ступень – конверсию СО.

При переработке газообразных углеводородов в азотоводородную смесь, в которой остаточное содержание углеводородов (метана) должно быть минимальным, процесс иногда ведётся в три ступени. На первой ступени имеет место конверсия исходного углеводородного газа с водяным паром; на второй ступени – конверсия остаточного СН4 с кислородом воздуха; на третьей ступени – конверсия окиси углерода.

Конкретным сырьём для получения водорода из газообразных углеводородов при термическом разложении служат любые углеводородные газы, не содержащие кислородных соединений, или содержащие их в незначительном количестве, как природные так и попутные газы, газы нефтепереработки и газы гидрирования.

При конверсии газообразных углеводородов с водяным паром углекислотой или кислородом сырьём являются: а) природные и попутные газы; б) газы нефтепереработки, в) газы гидрирования; г) жидкие газы (пропан, бутан); д) коксовый газ; е) метановая фракция после выделения водорода из коксового газа методом глубокого охлаждения.

При неполном окислении жидких углеводородов в качестве сырья применяются преимущественно нефтяные остатки.

При электрохимическом способе производства водород получается электрохимическом разложением воды (водных растворов).

Физические методы получения водорода представляют в настоящее время преимущественно способы выделения его из газовых смесей ступенчатым охлаждением последних до низких температур, при которых имеет место ожижение компонентов газовой смеси, кроме водорода. Исходными газовыми смесями в данном случае являются коксовый газ, газы гидрирования, отходящие побочные газы установок каталитической ароматизации (риформинга) и метан-водородные фракции [ ].


2.Водород как топливо.

Всем понятно, что запасы нефти и газа рано или поздно кончатся. Можно делать прогнозы, прикидывать, через сколько лет это произойдет, - кто-то остановился на числе 50, кто-то – на 70, а некоторые считают, что удастся протянуть еще лет сто. Но рано или поздно это случится. Последнее время именно элемент номер 1 таблицы Менделеева стал первым кандидатом на роль топлива будущего. Об этом говорят во всех развитых странах, в это вкладывают деньги. Водородная энергетика действительно очень экологична – первый элемент дает при сгорании только воду. Но существующие технологии (как производства самого водорода, так и получения из него электроэнергии) весьма далеки от совершенства.

Гиганты химической индустрии и сегодня уже получают по 500 млрд. м3 водорода в год. Половина производимого количества идет на аммиачные удобрения, остальное – на производство стали, стекла, маргарина… В основном водород получают паровым риформингом природного газа: метан при высоких температурах (900єС) реагирует с паром в присутствии никелевого катализатора. Пока такой водород самый дешевый (его цена ниже, чем у электролизного, примерно в три раза). Исследования последних лет показывают, что цену водорода можно уменьшить еще в два раза: ИВЭПТ РНЦ «Курчатовский институт» вместе с предприятиями Госкомоборонпрома разработал плазмохимический метод получения водорода из природного газа, более дешевый и к тому же с лучшими экологическими параметрами производства. Но если через 10 лет мир начнет постепенно переходить на водородные топливные элементы, водорода надо будет делать намного больше. Если увеличить существующее производство в 25 раз, то это к 2050 году покроет только 20% энергетической потребности в топливе.

Есть и другие технологии получения водорода, помимо риформинга природного газа: например – электролизом, крекингом или из биомассы. Каждый из этих вариантов имеет свои недостатки. Например, переработка биомассы (древесины, соломы): ее нагревают до 500-600єС, после чего получаются спирты – этанол, метанол, которые, в свою очередь, превращаются в водород. Можно нагреть биомассу до более высоких температур (1000єС), тогда она полностью превратится в газ и получится смесь Н2 и СО. Проблема в том, что сырья для такого процесса понадобится очень и очень много. Если, например, всю плодородную землю Франции пустить на выращивание биомассы, то водорода, полученного из нее, не хватит даже для того, чтобы покрыть ее потребности в бензине для ныне существующих автомобилей.

Казалось бы, самый простой способ получения водорода – электролиз воды. Результат – водород и кислород. Но в целом эффективность этого процесса не очень велика: надо потратить 4 кВт, чтобы получить 1 мі водорода, который даст 1,8 кВт в топливном элементе. Тем не менее электролиз воды довольно перспективен, и ему наверняка найдут применение. Во-первых, можно использовать энергию атомной станции в часы слабой нагрузки (когда энергия все равно вырабатывается и оказывается невостребованной) или, в конце концов, возобновляемые источники энергии (солнечные батареи, энергию ветра, прилива и прочие). Во-вторых, эта технология активно развивается: электролиз для большей эффективности можно проводить при повышенном давлении или температуре, что и пытаются сделать ученые.

Сейчас биологи активно разрабатывают еще одно направление. Некоторые бактерии и водоросли в процессе фотосинтеза разлагают воду и выделяют водород. Проблема в том, что они делают это только в отсутствие кислорода, соответственно процесс длится очень короткое время. Задача ученых – с помощью генной инженерии продлить этот период, тогда солнечные районы нашей планеты были бы обеспечены водородом.

Параллельно с техническими проблемами получения водорода надо решать и другие: создавать специальную инфраструктуру, обеспечивающую его хранение и перевозку. Это тоже весьма непростая и недешевая задача, поскольку водород горит и взрывается. Когда в серийном производстве появится водородный автомобиль, именно это станет лимитирующей стадией его внедрения.

Несмотря на трудности, по-видимому, в повседневную жизнь всех граждан скоро войдут топливные элементы на водороде. Слишком велики ставки, слишком большие вложены деньги в их разработку. Приоритетные направления исследований западных фирм – топливные элементы малой мощности (от 500 Вт до 5 кВт) для портативных компьютеров, маленьких автомобилей, домов, а также средней мощности (200 кВт) – для общественного транспорта. Пока они далеки от совершенства и стоят недешево: для автомобиля – в двадцать раз дороже стандартного двигателя, а для обогрева дома – в двенадцать раз дороже своего аналога. Но процесс идет настолько интенсивно, что европейцы обещают через четыре года выбросить на рынок водородный топливный элемент для обогрева дома всего за 6000 евро [ ].

Водород универсален, он является и горючим, и химическим сырьём. Водород удобен при хранении. Даёт возможность гибкого решения проблемы отбора энергии в условиях переменной потребности в нём, имеет высокую теплоту сгорания.

Универсализм водорода состоит в том, что он может заменить любой вид горючего в различных отраслях производства, в промышленности, на транспорте, в энергетике. Он способен заменить природный газ для бытовых целей, бензин – в двигателях внутреннего сгорания, специальные виды горючих – в ракетных двигателях, ацетилен – в процессах сварки металлов, кокс – в металлургических процессах, метан – в топливных элементах, углеводороды – в ряде микробиологических процессов, углерод – во многих процессах, требующих восстановителя. Водород может быть легко использован и на небольших передвижных или стационарных энергетических установках, в газовых турбинах для генерирования электроэнергии и в крупных топках и печах; может и храниться в любых количествах. Его использование в качестве энергоносителя не потребует коренных изменений в современной технологии топливоиспользования.

Использование водорода как энергоносителя позволяет рассматривать и решать энергетические проблемы в тесной связи с экологическими. Создаются благоприятные возможности для уменьшения образования твёрдых отходов, вредных газовых выбросов и ликвидации парникового эффекта. При водородной энергетике кислород, который получается из воды одновременно с водородом, может использоваться для биохимической очисти сточных вод, в качестве окислителя при сжигании твёрдых отходов.


Информация о работе «Новые транспортные двигатели»
Раздел: Транспорт
Количество знаков с пробелами: 68927
Количество таблиц: 7
Количество изображений: 11

Похожие работы

Скачать
34980
1
1

... искры грузовых автомобилей. Механический КПД Эффективный КПД Эффективный удельный расход топлива, г/кВт*ч, Здесь Нu принять в МДж/кг. 1.8 Основные размеры двигателя Литраж двигателя, л, дм3,   Здесь τ=4 – тактность современных транспортных двигателей. Рабочий объем одного цилиндра, дм3, где i – число цилиндров. Диаметр цилиндра и ход поршня ...

Скачать
113624
0
1

... ГТК России) были утверждены, а Министерством юстиции РФ (далее Минюст РФ) зарегистрированы «Общие правила перемещения через таможенную границу РФ транспортных средств физическими лицами»[6]. Но в начале 1996 года сложилась система государственного регулирования внешнеторговой деятельности, основой которой стала защита интересов отечественных производителей, стимулирование экспорта, сближение с ...

Скачать
142478
2
24

... контроля" передаст сигнал в "Центр". Система предназначена исключительно для городов и, по признанию разработчиков, не заменит автобусы и автомобили, а станет лишь дополнением к существующим видам общественного транспорта. 4.Монокар В современном мире существуют два основных типа транспортных средств. АВТОМОБИЛИ имеют более высокий комфорт, безопасность, грузоподъемность и т.д., но ...

Скачать
189038
19
4

... имитируемых эксплуатационных условиях и должны обеспечивать проведение всех видов и категорий контрольных и ресурсных испытаний, предусматриваемых общими техническими условиями (ОТУ) для серийного производства, а также после их ремонта. Испытательные стенды авиационных опытных ГТД, их систем и сборочных единиц (в составе ГТД) предназначены для проведения испытаний, исследований и доводки опытных ...

0 комментариев


Наверх