2.1 Общие сведения о процессе

Раствор карбамида с массовой долей карбамида 65-75 %, температурой 80-100 °С.

TI 2332 подается насосом поз. Р-303А(В) из сборника поз. V-302 в испаритель 1-ой ступени выпарки поз. Е-401. Испарители 1-ой ступени и II-й ступени выпаривания представляют собой кожухотрубные теплообменники, совмещенные в верхней части с сепаратором. Объемная подача раствора на выпарку (не менее 25 м3\ч) регулируется клапаном регулятора расхода FIRC 2012.

На I-ой ступени выпарки раствор карбамида упаривается при температуре 125-130 °С (ТIC 2341), абсолютном давлении 25-49 кПа (PIRC 2117). Температура раствора на выходе из 1-ой ступени регулируется регулятором давления пара PIC 2137 с коррекцией по TIC 2341. Пар 0,2?0,45 МПа подается в межтрубное пространство подогревателя поз. Е-401.

Парожидкостная смесь из подогревателя поз. Е-401 поступает в сепаратор поз. S-401, где соковые пары отделяются от раствора карбамида. Раствор карбамида из сепаратора поз. S-401 по барометрической трубе поступает в испаритель II-ой ступени поз. Е-402.

На II-ой ступени выпарки раствор упаривается при абсолютном давлении не более 5,0 кПа и температуре 135-140 °С (TIC 2342) до массовой доли карбамида в плаве не менее 99,7 %. Температура плава на выходе из II-ой ступени выпарки поддерживается регулятором PIC 2128 с коррекцией по TIC 2342. Пар давлением 0,4-0,8 МПа подается в межтрубное пространство испарителя поз. Е-402.

В сепараторе II-ой ступени поз. S-402 соковые пары отделяются от плава карбамида.

Плав карбамида из сепаратора поз. S-402 поступает на всас насосов плава поз.

Р-401А,(В) и далее на грануляцию. Для предотвращения кристаллизации плава в “рубашку” плавопровода подается пар 0,25-0,38 МПа.

Во время пуска узла выпаривания до выхода на нормальный технологический режим, плав карбамида через трехходовой клапан НСАОС 2613 циркулирует от насоса поз. Р-401А(В) в сборник поз. V-302.

По окончании вывода узла выпаривания на НТР плав подается на грануляторы, линия циркуляции плава промывается конденсатом от насоса поз. Р-901А(В) через клапан HIC 2614.

В качестве кондиционирующей добавки в линию всаса насосов поз. Р-401А(В), в плав карбамида из напорного бака поз. V-666 дозируется карбамидоформальдегидная смола.

Объемная подача раствора КФС, дозируется в плав карбамида, регулируется клапаном регулятора FIRC 1751. На входе КФС в линию плава установлен отсекатель НСА 1751, который закрывается при переводе узла выпаривания на циркуляцию. Положение клапана-отсекателя сигнализируется на ЦПУ. Для поддержания температуры раствора КФС на уровне 20-30 °С TI 1723 (3) в “рубашку” напорного бака поз. V-666 подается конденсат. Трубопроводы раствора КФС снабжены конденсатными “рубашками”.

Соковый пар из сепаратора поз.S-401 конденсируется в конденсаторе поз. Е-702. Не сконденсировавшиеся пары и инерты эжектором поз. I-702 подаются в концевой конденсатор поз. Е-705. Остаточное давление на I-ой ступени выпарки регулируется клапаном регулятора PIRC 2117. Соковый пар из сепаратора поз. S-402 эжектором поз.I-703 подается в конденсатор поз. Е-703.Несконденсировавшиеся пары и инерты в поз. Е-703 эжектором поз. I-704 транспортируются через второй конденсатор II-й ступени выпарки поз. Е-704 в концевой конденсатор поз. Е-705.

Не сконденсировавшиеся в концевом конденсаторе поз. Е-705 пары и инерты отводятся для окончательной очистки в колонну абгазов поз. С-751. Колонна поз. С-751 орошается охлажденной сточной водой. Объемная подача на орошение охлажденной сточной воды регулируются клапаном регулятора FIC 2023. (Не менее 0,5 м3/ч). Инерты из абсорбера поз. С-751 через “свечу” поз. Х-701 выбрасываются в атмосферу. Конденсат соковых паров из конденсаторов поз. Е-702, Е-703, Е-704, Е-705 самотеком отводится в сборник ам. воды поз. V-703.

Все конденсаторы выпарки охлаждаются оборотной водой.

Для предотвращения кристаллизации карбамида на стенках сепараторов поз. S-401 и поз. S-402, а также в газоходе соковых паров от сепаратора поз. S-402, предусмотрена постоянная промывка ам. водой от насоса поз. Р-703А(В).

В эжекторах I-ой и II-ой ступени выпарки используется пар 0,32-0,45 МПа (PIC 2139).

2.2 Выбор выпарного аппарата

Разнообразные конструкции выпарных аппаратов, применяемых в промышленности, можно классифицировать по типу поверхности нагрева (паровые рубашки, змеевики, трубчатки различных видов) и по ее расположению в пространстве (аппараты с вертикальной, горизонтальной иногда наклонной греющей камерой), по роду теплоносителя (водяной пар, высокотемпературные теплоносители, электрический ток и др.), а также в зависимости от того, движется теплоноситель снаружи или внутри труб нагревательной камеры.

Различают выпарные аппараты с неорганизованной, или свободной, направленной естественной и принудительной циркуляцией раствора.

Выпарные аппараты делятся также на аппараты прямоточные, в которых выпаривание раствора происходит за один его проход через аппарат без циркуляции раствора и аппараты, работающие с многократной циркуляцией раствора.

В зависимости от организации процесса различают периодические и непрерывно действующие аппараты.

Аппараты со свободной циркуляцией раствора

Простейшими типами являются периодически действующие открытые выпарные чаши с паровыми рубашками и змеевиковые. В выпарных аппаратах с рубашками происходит мало интенсивная неупорядоченная циркуляция выпариваемого раствора вследствие разности плотностей более нагретых и менее нагретых веществ. Поверхности нагрева рубашек и соответственно нагрузки этих аппаратов очень невелики.

Применяют при выпаривании сильноагрессивных и вязких, выделяющих твердые осадки, растворов.

Значительно большей поверхностью теплообмена в единице объема обладают змеевиковые выпарные аппараты. Аппараты более компактные, чем аппараты с рубашками, и отличаются несколько большей интенсивностью теплопередачи. В этих аппаратах также производят выпаривание небольших количеств химически агрессивных сред.

В вертикальных аппаратах с направленной естественной циркуляцией выпаривание осуществляется при многократной естественной циркуляции раствора.

В аппаратах с внутренней нагревательной камерой и центральной циркуляционной трубой обеспечивается естественная циркуляция, улучшающая теплопередачу и препятствующая образованию накипи на поверхности теплообмена. Недостатком является жесткое крепление кипятильных труб, не допускающее значительной разности тепловых удлинении труб и корпуса аппарата.

В аппаратах с подвесной нагревательной камерой благодаря свободному подвесу нагревательной камеры устраняется опасность нарушения плотности соединения кипятильных труб с трубными решетками вследствие разности тепловых удлинении труб и корпуса аппарата. Интенсивность циркуляции в аппаратах с подвесной нагревательной камерой недостаточна для эффективного выпаривания высоковязких и особенно кристаллизирующихся растворов.

В аппаратах с выносными циркуляционными трубами достигается более интенсивная теплопередача и уменьшается расход метала на 1м2 поверхности нагрева по сравнению с аппаратами с подвесной нагревательной камерой или центральной циркуляционной трубой.

В аппаратах с выносной нагревательной камерой скорость циркуляции может достигать 1,5м/с, что позволяет выпаривать в них концентрированные и кристаллизирующиеся растворы, не опасаясь слишком быстрого загрязнения поверхности теплообмена.

Аппараты с вынесенной зоной кипения могут эффективно применятся для выпаривания кристаллизирующихся растворов умеренной вязкости. Коэффициенты теплопередачи в таких аппаратах достигают 3000 Вт/(м2град).

В отличии от аппаратов с естественной циркуляцией в прямоточных аппаратах выпаривание происходит при однократном прохождение выпариваемого раствора по трубам нагревательной камеры. Таким образом, выпаривание осуществляется без циркуляции раствора. Различают аппараты с восходящей пленкой (упаривание кипящих растворов) и со стекающей пленкой (упаривание вязких и термоноестойких растворов).

Для того чтобы устранить отложение накипи в трубах, особенно при выпаривании кристаллизирующихся растворов, необходима скорость циркуляции не менее 2-2,5 м/с. Такие условия можно создать в аппаратах с принудительной циркуляцией. Скорость циркуляции определяется производительностью циркуляционного насоса и не зависит от высоты уровня жидкости в трубах, и также от интенсивности парообразования.

По технологическим причинам использование многокорпусных выпарных аппаратов иногда может оказаться неприемлемым. Так, например, приходится отказываться от многокорпусного выпаривания тех чувствительных к высоким температурам растворов, для которых температура кипения в первых корпусах многокорпусных установок слишком высоки и могут вызвать порчу продукта.

Проанализировав физические свойства выпариваемого раствора выбираем выпарной трубчатый аппарат с естественной циркуляцией и соосной греющей камерой.



Информация о работе «Концентрирование карбамида»
Раздел: Химия
Количество знаков с пробелами: 30379
Количество таблиц: 17
Количество изображений: 1

Похожие работы

Скачать
40627
3
14

... второй ступени, а оставшаяся вода удаляется в канализацию. Колонна синтеза 5 размещена на открытой площадке, остальное оборудование – в здании. Рисунок1 – технологическая схема производства карбамида Полученный раствор карбамида последовательно упаривают в выпарных аппаратах первой и второй ступени 27 и 28 соответственно при температуре 120–125°С и давлении 30–40 кПа и 130–140°С и ...

Скачать
119679
6
3

... ее образуются желто-красные осадки гидразонов, склонные к быстрой кристаллизации. Таким же путем легко обнаружить и биурет в карбамиде. Количественные определения минеральных удобрений Все количественные определения минеральных удобрений производятся согласно ГОСТ 21560.4-02. В промышленных минеральных удобрениях принято рассчитывать следующие количественные показатели: 1.       ...

Скачать
12627
7
0

... , сено луговое, солому овсяную и куузику. В Таблице 3 представлен оптимальный кормовой рацион. Минимальная его стоимость – 89 рублей 94 копейки получается при следующем составе рациона. Таблица 3. Состав оптимального рациона кормления. № пер. Вид корма Количество корма, кг Содержание питательных веществ Стоимость, руб. к. ед. п.п. Кар. 1 Отруби овсяные 0,529 21,42 0,63 4, ...

Скачать
116208
7
6

... определение NH+4 без предварительной отгонки аммиака. В частности, было показано, что определение без предварительной отгонки вполне применимо при анализе сточных вод, содержащих наряду с аммиаком ряд органических соединений, в состав которых входит азот (меламин, дицианамид, карбамид, циануровая кислота). Мешают сильно сероводород и сульфиды. Их можно удалить, подкислив пробу до pH=3 и ...

0 комментариев


Наверх