Государственное образовательное учреждение

высшего профессионального образования

Санкт-Петербургский Государственный

Инженерно-Экономический Университет

РЕФЕРАТ

на тему:

«Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов в условиях неопределенности»

Выполнил: Деревянко П.М.

Проверил: к.э.н., доц. Сергеев В.Р.

Санкт-Петербург

2006

Ó Деревянко П.М. Персональный сайт:  http://fuzzylib.narod.ru/

Оглавление

Список используемых сокращений 3

1. Анализ традиционных методов оценки экономической эффективности инвестиционных проектов в условиях риска и неопределенности 4

2. Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов в условиях неопределенности 13


Список используемых сокращений

1.  ЗЛП – Задача Линейного Программирования

2.  ИП – Инвестиционный(-ые) Проект(-ы)

3.  ЛПР – Лицо, Принимающее Решение

4.  НМП – Нечеткое Математическое Программирование

5.  ПР – Принятие Решений

6.  ТНМ – Теория Нечетких Множеств

1. Анализ традиционных методов оценки экономической эффективности инвестиционных проектов в условиях риска и неопределенности

В ходе реализации ИП генерируется определенное движение денежных средств в форме их поступления и расходования. Это движение денежных средств реализуемого во времени ИП представляет собой непрерывный процесс и определяется понятием «денежный поток». Денежный поток представляет собой совокупность распределенных во времени поступлений и выплат денежных средств, генерируемых в ходе осуществления ИП [3]. Понятие "денежный поток" является агрегированным, составным, включающим в свой состав многочисленные виды этих потоков. Для эффективного, целенаправленного управления денежные потоки классифицируются по различным признакам. С экономической точки зрения ИП можно представить в виде модели денежных потоков, в которой наиболее укрупненно выделяются денежные притоки () и оттоки () в -ом периоде. Как правило, денежные потоки рассматриваются как равномерные в течение периода  и приводятся к концу периода.

Оценка эффективности ИП представляет собой один из наиболее ответственных этапов в решении целого ряда стратегических задач, характерных для стадии реализации инвестиционной стратегии. Обоснованность принимаемого инвестиционного решения напрямую зависит от того, насколько объективно и всесторонне проведена эта оценка. В основе оценки эффективности ИП лежит система показателей, соизмеряющих полученный эффект от реализации ИП с его инвестиционными затратами. Ключевым вопросом в этой связи является сопоставление денежных потоков, что обусловлено следующими факторами: временной стоимостью денег, нестабильностью экономической ситуации.

Для оценки эффективности долгосрочных инвестиционных проектов используются различные показатели, наиболее известные из которых:

Ø Чистая текущая стоимость – NPV, ден.ед.;

Ø Индекс рентабельности – PI, д.ед.;

Ø Период окупаемости с учетом дисконтирования – DPP, годы;

Ø Внутренняя норма рентабельности – IRR, %;

Ø Модифицированная внутренняя норма рентабельности – MIRR, %;

Вышеперечисленные показатели оценки экономической эффективности ИП являются основой для принятия обоснованного инвестиционного решения.

В многочисленной литературе описаны различные модификации формул вычисления показателей экономической эффективности ИП (NPV, PI, DPP, IRR, MIRR) в зависимости от исходных условий [2,15,19,23,28,29,30,31], поэтому в данной работе не будет подробно описываться суть данных показателей, так как заинтересованный читатель сам может найти данную информацию в литературе. Очевидно, что каждый из вышеприведенных показателей имеет свои отличительные преимущества и недостатки, которые также детально описаны в литературе, поэтому для принятия обоснованных инвестиционных решений необходимо совместное использование данных показателей, так как они позволяют ЛПР с разных сторон оценить эффективность ИП.

Общим недостатком вышеперечисленных показателей эффективности ИП является требование определенности входных данных, которая достигается путем применения средневзвешенных значений входных параметров ИП, что, может привести к получению значительно смещенных точечных оценок показателей эффективности и риска ИП. Также очевидно, что требование детерминированности входных данных является неоправданным упрощением реальности, так как любой ИП характеризуется множеством факторов неопределенности: неопределенность исходных данных, неопределенность внешней среды, неопределенность, связанная с характером, вариантами и моделью реализации проекта, неопределенность требований, предъявляемых к эффективности ИП. Именно факторы неопределенности определяют риск проекта, то есть опасность потери ресурсов, недополучения доходов или появления дополнительных расходов. При анализе долгосрочных ИП, в том числе на основе вышеперечисленных показателей, необходимо прогнозировать во времени будущее состояние большого числа неопределенных параметров рыночной конъюктуры, поэтому абсолютно точный прогноз получить практически невозможно. При прогнозировании экономической эффективности и оценки рисков реализации ИП ключевым является проявление неопределенности числовых параметров планируемого ИП. Неустранимая неопределенность порождает столь же неустранимый риск принятия инвестиционных решений [10,11,12,13,24,26]. Следовательно, при проведении прогнозов необходимо учитывать факторы неопределенности, обуславливающие риск по определенному показателю эффективности, поэтому мы неминуемо сталкиваемся с проблемой формального представления неопределенных прогнозных параметров, определяющих ИП, и проведение с ними соответствующих расчетов. Таким образом, наличие различных видов неопределенностей приводит к необходимости адаптации вышеописанных показателей оценки экономической эффективности ИП на основе применения математических методов, позволяющих формализовать и одновременно обрабатывать различные виды неопределенности.

Если ИП формализовать в виде модели денежных потоков, которая в данной работе принята за базовую, то различные подходы к формализации неопределенности различаются по способам описания входных параметров ИП, то есть составляющих величин , , . Среди различных подходов к моделированию в условиях неопределенности можно выделить три основных подхода: вероятностный, нечетко-множественный и экспертный. Как свидетельствует мировой опыт [1,5,6,7,12,14,20,24,35], эффективность применения подходов на основе вероятностных, нечетко-множественных и экспертных описаниях к решению различных задач, зависит от уровня и характера неопределенности, связанной с конкретной задачей. Действительно, по мере увеличения неопределенности классические вероятностные описания уступают место, с одной стороны, субъективным (аксиологическим) вероятностям, основанным на экспертной оценке, а, с другой стороны, нечетко-интервальным описаниям, выраженным в виде функций принадлежности нечетких чисел или, в частном случае, в виде четкого интервала. Субъективные (аксиологические) вероятности - это вероятностные формализмы, не имеющие частотного смысла, а представляющие собой, к примеру, результат виртуального пари по Сэвиджу, точечную оценку, основанную на принципе максимума энтропии Гиббса-Джейнса [6,27]. При этом возникает серьезная проблема обоснования выбора этих оценок. Кроме того, как показано на конкретном примере в [6], принцип максимума энтропии Гиббса-Джейнса не согласуется с правилами рационального экономического поведения (не обеспечивается монотонность).

Очевидно, если исходные параметры ИП характеризуются репрезентативной статистикой, или имеются достаточные основания полагать, что исходные параметры подчиняются определенному вероятностному закону, то в данной ситуации применение вероятностного подхода вполне оправдано и эффективно. Однако, как правило, при моделировании реальных ИП, статистика либо не достаточно репрезентативна, либо отсутствует вовсе, тогда применение вероятностного подхода затруднительно, либо невозможно вовсе. Положение усугубляется тем, что при моделировании реальных ИП, приходиться иметь дело с различными видами неопределенности, что связано, с наличием разного объема полезной информации относительно неопределенных параметров ИП, а, следовательно, встает проблема одновременного использования и обработки такой разнородной информации, отсюда возникает необходимость приведения данной информации к единой форме представления.

В мировой практике инвестиционного менеджмента используются различные методы оценки эффективности инвестиционных проектов в условиях риска и неопределенности, к наиболее распространенным из которых следует отнести следующие методы:

Ø метод корректировки ставки дисконтирования (премия за риск);

Ø метод достоверных эквивалентов (коэффициентов достоверности);

Ø анализ чувствительности показателей эффективности (NPV, IRR и др.);

Ø метод сценариев;

Ø методы теории игр (критерий максимина, максимакса и др.);

Ø построение «дерева решений»;

Ø имитационное моделирование по методу Монте-Карло;

Детальное описание выше перечисленных методов дано в различных литературных источниках [6,29,30], поэтому остановимся более подробно на особенностях и недостатках их практического применения.

Метод корректировки ставки дисконтирования предусматривает приведение будущих денежных потоков к настоящему моменту времени по более высокой ставке, но не дает никакой информации о степени риска (возможных отклонениях конечных экономических результатов). При этом получаемые результаты существенно зависят только от величины надбавки (премии) за риск. Также, недостатком данного метода являются существенные ограничения возможностей моделирования различных вариантов развития ИП, которые сводятся к анализу зависимости показателей NPV, IRR и др. от изменений одного показателя — нормы дисконта. Таким образом, в данном методе различные виды неопределенности и риска формализуются в виде премии за риск, которая включается в ставку дисконтирования.

Метод достоверных эквивалентов (коэффициентов достоверности) в отличие от предыдущего метода предполагает корректировку не нормы дисконта, а денежных потоков ИП в зависимости от достоверности оценки их ожидаемой величины. С этой целью рассчитываются специальные понижающие коэффициенты  для каждого планового периода . Данный метод имеет несколько вариантов в зависимости от способа определения понижающих коэффициентов. Один из способов заключается в вычислении отношения достоверной величины чистых поступлений денежных средств по безрисковым вложениям (операциям) в период , к запланированной (ожидаемой) величине чистых поступлений от реализации ИП в этот же период  [29]. Очевидно, что при таком способе определения коэффициентов достоверности денежные потоки от реализации ИП интерпретируются как поступления от безрисковых вложений, что приводит к невозможности проведения анализа эффективности ИП в условиях неопределенности и риска.

Другой вариант данного метода заключается в экспертной корректировке денежных потоков с помощью понижающего коэффициента, устанавливаемого в зависимости от субъективной оценки вероятностей. Однако интерпретация коэффициентов достоверности как субъективных вероятностей, свойственная данному подходу, не соответствует экономической сущности оценки риска [29]. Применение коэффициентов достоверности в такой интерпретации делает принятие инвестиционных решений произвольным и при формальном подходе может привести к серьезным ошибкам и, следовательно, к последующим негативным последствиям для предприятия.

Метод анализа чувствительности показателей эффективности ИП (NPV, IRR и др.) позволяет на количественной основе оценить влияние на ИП изменения его главных переменных. Главный недостаток данного метода заключается в том, что в нем допускается изменение одного параметра ИП изолированно от всех остальных, т.е. все остальные параметры ИП остаются неизменными (равны спрогнозированным величинам и не отклоняются от них). Такое допущение редко соответствует действительности.

Метод сценариев позволяет преодолеть основной недостаток метода анализа чувствительности, так как с его помощью можно учесть одновременное влияние изменений факторов риска. К основным недостаткам практического использования метода сценариев можно отнести, во-первых, необходимость выполнения достаточно большого объема работ по отбору и аналитической обработке информации для каждого возможного сценария развития, и как следствие, во-вторых, эффект ограниченного числа возможных комбинаций переменных, заключающейся в том, что количество сценариев, подлежащих детальной проработке ограничено, так же как и число переменных, подлежащих варьированию, в-третьих, большая доля субъективизма в выборе сценариев развития и назначении вероятностей их возникновения.

Если существует множество вариантов сценариев развития, но их вероятности не могут быть достоверно оценены, то для принятия научно обоснованного инвестиционного решения по выбору наиболее целесообразного ИП из совокупности альтернативных ИП в условиях неопределенности применяются методы теории игр, некоторые из которых рассмотрены ниже:

Критерий MAXIMAX не учитывает при принятии инвестиционного решения риска, связанного с неблагоприятным развитием внешней среды.

Критерий MAXIMIN (критерий Вальда) минимизирует риск инвестора, однако при его использовании многие ИП, являющиеся высокоэффективными, будут необоснованно отвергнуты. Этот метод искусственно занижает эффективность ИП, поэтому его использование целесообразно, когда речь идет о необходимости достижения гарантированного результата.

Критерий MINIMAX (критерий Сэвиджа), в отличие от критерия MAXIMIN, ориентирован не столько на минимизацию потерь, сколько на минимизацию сожалений по поводу упущенной прибыли. Он допускает разумный риск ради получения дополнительной прибыли. Пользоваться этим критерием для выбора стратегии поведения в ситуации неопределенности можно лишь тогда, когда есть уверенность в том, что случайный убыток не приведет фирму (инвестиционный проект) к полному краху.

Критерий пессимизма-оптимизма Гурвица [33] устанавливает баланс между критерием MAXIMIN и критерием MAXIMAX посредством выпуклой линейной комбинации. При использовании этого метода из всего множества ожидаемых сценариев развития событий в инвестиционном процессе выбираются два, при которых  достигает минимальной и максимальной эффективности. Выбор оптимального ИП по показателю  осуществляется по формуле:

, (1.1)

где  - коэффициент пессимизма-оптимизма, который принимает значение в зависимости от отношения ЛПР к риску, от его склонности к оптимизму или к пессимизму. При отсутствии ярко выраженной склонности . При  (точка Вальда) критерий Гурвица совпадает с максиминым критерием, при  - с максимаксным критерием.

Общий недостаток рассмотренных выше методов теории игр состоит в том, что предполагается ограниченное количество сценариев развития (конечное множество состояний окружающей среды).

Метод построения «дерева решений» сходен с методом сценариев и основан на построении многовариантного прогноза динамики внешней среды. В отличие от метода сценариев он предполагает возможность принятия самой организацией решений, изменяющих ход реализации ИП и использующих специальную графическую форму представления результатов («дерево решений»). Данный метод может применяться в ситуациях, когда более поздние решения сильно зависят от решений, принятых ранее, и в свою очередь, определяют сценарии дальнейшего развития событий [29]. Основными недостатками данного метода при его практическом использовании являются, во-первых, техническая сложность данного метода при наличии больших размеров исследуемого «дерева» решений, так как затрудняется не только вычисление оптимального решения, но и определение данных, во-вторых, присутствует слишком высокий субъективизм при назначении оценок вероятностей.

Имитационное моделирование по методу Монте-Карло является наиболее сложным, но и наиболее мощным методом оценки и учета рисков при принятии инвестиционного решения. В связи с тем, что в процессе реализации этого метода происходит проигрывание достаточно большого количества вариантов, то его можно отнести к дальнейшему развитию метода сценариев. Метод Монте-Карло дает наиболее точные и обоснованные оценки вероятностей по сравнению с вышеописанными методами. Однако, несмотря на очевидную привлекательность и достоинства метода Монте-Карло с теоретической точки зрения, данный метод встречает серьезные препятствия в практическом применении, что обусловлено следующими основными причинами:

Ø Высокая чувствительность получаемого результата по методу Монте-Карло к законам распределения вероятностей и видам зависимостей входных переменных инвестиционного проекта [18,20];

Ø Несмотря на то, что современные программные средства позволяют учесть законы распределения вероятностей и корреляции десятков входных переменных, между тем оценить их достоверность в практическом исследовании обычно не представляется возможным, так как, в большинстве случаев, аналитики измеряют вариации основных переменных макро- и микросреды, подбирают законы распределения вероятностей и статистические связи между переменными субъективно, поскольку получение качественной статистической информации не представляется возможным по самым различным причинам (временным, финансовым и т.д.) [6], особенно для уникальных ИП в реальном секторе экономики;

Ø Вследствие двух вышеописанных причин, точность результирующих оценок, полученных по данному методу, в значительной степени зависит от качества исходных предположений и учета взаимосвязей входных переменных, что может привести к значимым ошибкам в полученных результатах (например, переоценке или недооценке риска ИП), а, следовательно, к принятию ошибочного инвестиционного решения;

Таким образом, проведенный анализ традиционных методов оценки эффективности ИП в условиях риска и неопределенности свидетельствует об их теоретической значимости, но ограниченной практической применимости для анализа эффективности и риска ИП из-за большого числа упрощающих модельных предпосылок, искажающих реальную среду проекта.


Информация о работе «Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов в условиях неопределенности»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 40545
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
174290
16
39

... ». При нажатии этой кнопки загружается форма отчета, показанная на рисунке А9 приложения А. Текст программы приведен в приложение Б. 3.3 Оценка риска инвестиционного проекта ОАО «Завод по производству труб большого диаметра» с применением теории вероятностей Исходные данные для проведения оценки риска инвестиционного проекта были предоставлены институтом по проектированию металлургических ...

Скачать
87270
2
3

... представляет собой один из наиболее важных аспектов деятельности любой динамично развивающейся организации. Для планирования и осуществления инвестиционной деятельности особую важность имеет предварительный анализ, который проводится на стадии разработки инвестиционных проектов и способствует принятию разумных и обоснованных управленческих решений. Главной задачей предварительного анализа является ...

Скачать
72934
8
1

... и процентный риски. В свою очередь, подавляющее большинство рисков предприятия составляют основу кредитных рисков банков: чем выше риски предприятия, тем более высокую цену за свой риск назначает банк 2. Способы оценки степени риска Оценка риска является важнейшей составляющей общей системы управления риском. Она представляет собой процесс определения количественным или качественным ...

Скачать
85723
9
10

... на 61 страницах машинописного текста, содержит 4 рисунка, 13 таблиц. Во «Введении» обоснована актуальность темы, определены цели и задачи, предмет исследования. В первой главе «Оценка рисков инвестиционного проекта: качественный и количественный подходы» рассматриваются теоретические основы и характеристика качественного и количественного подходов, методы оценки рисков проекта, а так же ...

0 комментариев


Наверх