ЧИСЕЛЬНЕ РОЗВ’ЯЗАННЯ ЗАДАЧ оптимального керування
1 Дискретизація задачі із закріпленим лівим і вільним правим кінцем. Необхідні умови оптимальності

Розглянемо неперервну задачу оптимального керування

,(1)

,(2)

, , . (3)

Виконаємо дискретну апроксимацію даної задачі. Для цього розіб’ємо відрізок  точками ,  і будемо обчислювати значення цільового функціонала і закону руху тільки в точках розбиття: , , . Закон руху в цьому випадку можна записати у вигляді:

.

Тепер дискретна задача оптимального керування, що апроксимує неперервну задачу (1) – (3), матиме вигляд:

, , (4)

 , (5)

 (6)

, . (7)

Для пошуку оптимального розв’язку отриманої дискретної задачі може бути застосований метод множників Лагранжа. Функція Лагранжа має вигляд:

,

,(8)

де .

Обмеження на керування введемо далі, під час реалізації чисельного методу. Відзначимо, що перед першим доданком стоїть знак «–», оскільки  і якщо не додавати «–», то характер екстремуму початкової функції зміниться.

Якщо  – локально-оптимальний процес для задачі (4) – (7), то існують такі нерівні одночасно нулю множники Лагранжа , , , , що матимуть місце наступні умови:

1.  або

,

,

. (10)

2.  або

,

. (11)

Із (9) одержимо ітераційні співвідношення для спряжених змінних , а з (10) – співвідношення для :

, (12)

 . (13)

Перепишемо співвідношення (12) у вигляді:

.

Очевидно, що останнє співвідношення є аналогом спряженої системи для неперервних задач керування. Дійсно,

.

Якщо , то з останнього співвідношення одержимо


.

Зі співвідношення (13) випливає, що .

Сформулюємо критерій оптимальності для задачі (4) – (7). Вважатимемо, що функції ,  неперервно-диференційовані за змінними  і опуклі за . Тоді для локально-оптимального процесу  існують такі множники Лагранжа , , , , не всі рівні нулю одночасно, що матимуть місце необхідні умови екстремуму:

1) умови стаціонарності в точці :

;

2) . (14)

Розпишемо (14), використовуючи вираз для функції Лагранжа:

Перетворимо вираз під знаком мінімуму, переходячи до довільного :

Або

Якщо , то з останнього співвідношення одержимо

2 Ітераційний метод розв’язання дискретної задачі оптимального керування з двійним перерахуванням

Розглянемо ітераційний метод пошуку оптимального керування задачі (4) – (7). Суть методу полягає в тому, що на кожній ітерації обчислюються два вектори:  і . Перший із них містить -е наближення для керувань у моменти часу  для системи (14), при , а другий – -е наближення для фазових станів системи в ці ж моменти часу. Отже, на кожній ітерації ми одержуємо процес , що є -м наближенням до шуканого оптимального процесу.

Контроль у методі подвійного перерахування полягає в повторному перерахуванні результатів задачі і порівнянні отриманих даних для різних значень кроку розбиття. У випадку розбіжності виконується корекція і обчислення повторюються.

Розглянемо алгоритм методу.

1. Задаємо крок розбиття  та точність обчислень .

2. Задаємо початкове наближення – припустимий набір керувань на кожному кроці – початкову стратегію керування:

, , ,

де  – наближення керування в момент  на ітерації .

3. За визначеною в п. 2 стратегією керування  будуємо фазову траєкторію процесу

, ,

на початкової ітерації , використовуючи початкові умови і різницеві співвідношення, що апроксимують рівняння руху:

, .

4. Визначаємо початкове наближення  відповідно до (5).


Информация о работе «Чисельне розв’язання задач оптимального керування»
Раздел: Информатика, программирование
Количество знаков с пробелами: 8127
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
11275
0
1

... провести, то одержимо співвідношення . Це означає, що різним реалізаціям випадкового збурення  для одного початкового стану  відповідатимуть різні оптимальні стратегії керування . 4 Формальна постановка задачі оптимального стохастичного керування Розглянемо систему (2) із цільовим функціоналом (3). Надалі, якщо інше не обговорено спеціально, будемо вважати, що оптимальні керування на ...

Скачать
162243
21
52

... випадків, аварій, а з цим і простоїв на підприємстві, укріпити та створити культуру трудової діяльності. Виконання та розробка дипломного проекту “ Розробка дослідження системи керування електроприводом змінного струму дизель-потягу з використанням нейронних мереж ” відбувається за допомогою комп'ютера, тому питання охорони праці розглядаються щодо забезпечення здорових і безпечних умов роботи ...

Скачать
48339
9
15

... у формулу (2.11) і визначити наступний стан системи . Для зміненого стану знайти оптимальне управління , підставити у формулу (2.11) і так далі. Для і-гo стану , знайти  і  і т.д. [1]. 3. Оптимальний розподіл інвестицій, як задача динамічного програмування Інвестор виділяє кошти в розмірі  умовних одиниць, котрі повинні бути розподілені між -підприємствами. Кожне і-те підприємство при і ...

Скачать
161859
21
7

... груп за визначений період часу. За допомогою цих даних (статистичної вибірки) ми зможемо описати закон розподілу попиту, на основі якого в подальшому буде ґрунтуватись оптимальне використання складських приміщень. Масштабування даних – переведення з одиниць виміру «пляшки» в «ящики» для зручності розрахунків. Обчислення середніх значень попиту на товари за період та окремо по кожному виду. ...

0 комментариев


Наверх