5. Знаходимо спряжені змінні за формулами (12) – (13).

Визначаємо наступні наближення до оптимального керування ,

в момент  як розв’язки задачі (15) або (16):

, .

7. Обчислюємо відповідну стратегії  траєкторію

за формулами (4), (6):

, , .

8. Знаходимо наступне наближення цільового функціонала

 за формулою (5).

9. Якщо , то переходимо до п. 10, інакше вважаємо, що

, ,  і переходимо до п. 13.

10. Перевіряємо, чи виконується задана точність обчислень. Якщо

 і ,

то переходимо до п. 13, інакше – до п. 11.

11. Позначаємо

, , .

12. Виконуємо наступний крок ітераційного методу – п. 5.

13. Позначаємо

, ,  – розв’язок, отриманий із кроком розбиття .

1 Якщо крок  не ділився, то переходимо до п. 15, інакше – до п. 1

15. Ділимо крок

. Тоді  і переходимо до п. 2 при .

1 Перевіряємо задану точність. Якщо

 і ,

то переходимо до п. 18, інакше переходимо до п. 17.

17. Позначаємо


, , , , і переходимо до п. 15 – наступного кроку подвійного перерахування.

18. , ,  – розв’язок задачі.

Кінець алгоритму.

3. Оптимальне стохастичне керування: формулювання із зовнішнім інтегралом

Розглянемо відображення , що задане формулою

, (17)

за таких припущень:

 параметр  приймає значення з вимірного простору . Для будь-якої фіксованої пари  задана ймовірнісна міра  на просторі , а символ  у формулі (12) означає зовнішній інтеграл відносно цієї міри. Отже,

;

 функції  і  відображують множину  відповідно в множини  і , тобто , ;

 скаляр  додатний.

Формули (1), (6) є окремими випадками відображення  з (12). Очевидно, що відображення (1) для детермінованої задачі випливає з (12), якщо множина  складається з єдиного елемента, а відображення (6) (для стохастичної задачі зі зліченним простором збурень) відповідає випадку, коли множина  зліченна, а  є -алгеброю, складеною із всіх підмножин .

Очевидно, що відображення  з (12) задовольняє припущенню монотонності. Якщо на множини ,  і функції ,  і  накласти вимоги вимірності, то витрати за  кроків  можна визначити в термінах звичайного інтегрування для будь-якої стратегії , для якої функції ,  вимірні.

Для початкового стану  і стратегії  ймовірнісні міри

, ...,

у сукупності із системою рівнянь

, (18)

визначають єдину міру  на -кратному прямому добутку  копій простору . У випадку, якщо , , і виконується одна з умов

 або

,

то функція витрат за  кроків, що відповідає вимірній стратегії , приводиться до звичайного вигляду
,

де стани ,  виражено як функції змінних , ...,  за допомогою рівнянь (13) та початкового стану .

Рекурентне співвідношення методу динамічного програмування для розв’язання багатоетапних задач оптимального стохастичного керування зі скінченним горизонтом можна записати так:

, ,

де  – щільність розподілу величини .

4 Оптимальне стохастичне керування: мультиплікативний функціонал витрат

Розглянемо відображення , що задане формулою

, (19)

за припущення, що параметр  приймає значення зі зліченної множини  відповідно до заданого розподілу ймовірностей, що залежать від стану  і керування . Вважатимемо також, що , , , . Тоді відображення  з формули (14) задовольняє припущенню монотонності.

Якщо , , то задача оптимального керування з мультиплікативним функціоналом витрат і скінченним горизонтом  матиме такий вигляд:

, (20)

. (21)

а відповідна задача з нескінченним горизонтом:

, (22)

. (23)

Границя в (23) існує, якщо :  або .

Самостійний інтерес становить задача з експоненціальною функцією витрат

,

,

де .

Для розв’язання багатоетапних задач оптимального стохастичного керування з мультиплікативним функціоналом витрат використовується таке рекурентне співвідношення алгоритму динамічного програмування:

, ,

де  – щільність розподілу величини .

5. Мінімаксне керування

Розглянемо задачу керування системою, у якій некерованими впливами є стратегії супротивника (або явища природи) , , що обираються залежно від поточного стану  і керування . Вважатимемо, що припустимі стратегії супротивника приймають значення із множини , . Будемо обчислювати стратегію керування , орієнтуючись на найгіршу поведінку супротивника. Розглянемо відображення , задане формулою

,

за таких припущень:

 параметр  приймає значення з деякої множини , а  – непуста підмножина  при будь-яких , ;

 функції  і  відображують множину  в множини  та  відповідно, тобто , ;

 скаляр  додатний.

За таких умов припущення про монотонність для відображення  має місце. Якщо при цьому ,  і  для всіх , , , то відповідну -крокову задачу мінімаксного керування можна сформулювати так:

, (17)

. (18)

Задача з нескінченним горизонтом формулюється аналогічно:

, (24)

. (25)

Границя у співвідношенні (25) існує при виконанні будь-якої з умов:

·  , , , ;

·  , , , ;

·  , , , ,  і деякого .

Для розв’язання багатокрокових мінімаксних задач оптимального стохастичного керування рекурентне співвідношення алгоритму динамічного програмування використовується у такому вигляді:

, ,

,

.


Информация о работе «Чисельне розв’язання задач оптимального керування»
Раздел: Информатика, программирование
Количество знаков с пробелами: 8127
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
11275
0
1

... провести, то одержимо співвідношення . Це означає, що різним реалізаціям випадкового збурення  для одного початкового стану  відповідатимуть різні оптимальні стратегії керування . 4 Формальна постановка задачі оптимального стохастичного керування Розглянемо систему (2) із цільовим функціоналом (3). Надалі, якщо інше не обговорено спеціально, будемо вважати, що оптимальні керування на ...

Скачать
162243
21
52

... випадків, аварій, а з цим і простоїв на підприємстві, укріпити та створити культуру трудової діяльності. Виконання та розробка дипломного проекту “ Розробка дослідження системи керування електроприводом змінного струму дизель-потягу з використанням нейронних мереж ” відбувається за допомогою комп'ютера, тому питання охорони праці розглядаються щодо забезпечення здорових і безпечних умов роботи ...

Скачать
48339
9
15

... у формулу (2.11) і визначити наступний стан системи . Для зміненого стану знайти оптимальне управління , підставити у формулу (2.11) і так далі. Для і-гo стану , знайти  і  і т.д. [1]. 3. Оптимальний розподіл інвестицій, як задача динамічного програмування Інвестор виділяє кошти в розмірі  умовних одиниць, котрі повинні бути розподілені між -підприємствами. Кожне і-те підприємство при і ...

Скачать
161859
21
7

... груп за визначений період часу. За допомогою цих даних (статистичної вибірки) ми зможемо описати закон розподілу попиту, на основі якого в подальшому буде ґрунтуватись оптимальне використання складських приміщень. Масштабування даних – переведення з одиниць виміру «пляшки» в «ящики» для зручності розрахунків. Обчислення середніх значень попиту на товари за період та окремо по кожному виду. ...

0 комментариев


Наверх