Содержание
1. Усилительные каскады на составных транзисторах
2. Усилительные каскады с динамическими нагрузками
3. Каскадные усилители
4. Многокаскадные усилители. Амплитудно-частотные характеристики многокаскадных усилителей
5. Переходные характеристики многокаскадных усилителей
6. Выбор числа каскадов импульсных усилителей
1. Усилительные каскады на составных транзисторах
Составной транзистор – это сочетание двух или более транзисторов, образующих активный трехполюсник с новыми параметрами и характеристиками.
В интегральных микросхемах формируются составные транзисторы, состоящие в основном из двух активных элементов. На дискретных элементах – могут включать три транзистора. Большее число транзисторов пока не применяется, так как при имеющихся мощностях транзисторов входной транзистор будет работать при малых токах, т. е. в «голодном» режиме, отчего параметры составного транзистора будут сильно зависеть от температуры. Используя известные схемы нормального включения транзисторов (ОИ, ОС, ОЗ и ОЭ, ОК, ОБ) можно получить различные составные транзисторы:
– два биполярных транзистора одного или разного типов проводимости;
– биполярный и полевой транзисторы;
– два полевых транзистора с одинаковыми или противоположными проводимостями каналов.
Рассмотрим различные варианты составных транзисторов.
1) Составной транзистор на двух биполярных транзисторах типа n-p-n, включенных по схеме с общим коллектором.
Входное сопротивление составного транзистора
,
ток эмиттера первого транзистора
,
тогда
.
Таким образом входное сопротивление составного транзистора много больше входного сопротивления одного транзистора.
Коэффициент усиления по току
.
Ток коллектора
, , ,
тогда
.
Таким образом коэффициент усиления по току составного транзистора много больше коэффициента усиления по току одного транзистора. Так как коллекторы транзисторов соединены параллельно, то выходная проводимость составного транзистора
.
2) Составной транзистор p-n-p типа.
Входное сопротивление составного транзистора определяется входным сопротивлением первого транзистора: .
Выходная проводимость определяется выходной проводимостью второго транзистора: .
Усиление по току
, , .
Со стороны входа данный составной транзистор представляет собой p-n-p транзистор.
Рассмотрим несколько примеров применения составных транзисторов.
Входной ток транзистора VT2 представляет собой эмиттерный ток транзистора VT1, который достаточно мал. Входной ток транзистора VT1 - величина еще меньшая, т. е. транзистор VT1 работает в «голодном» режиме. «Голодный» режим первого транзистора заметно уменьшает его коэффициент усиления тока и в целом коэффициент усиления составного транзистора (). Это одна из причин нецелесообразности применения большого числа транзисторов (более двух) по составной схеме.
Это явление можно ослабить или нейтрализовать, подключив дополнительный резистор R. При этом эмиттерный ток первого транзистора не ограничивается током базы второго транзистора, а коэффициент усиления тока первого транзистора увеличивается.
Для нормального режима питания первых транзисторов по постоянному току включаются резисторы R. Схемы повышают входное сопротивление, особенно в случае, если транзисторы VT1 заменить на полевые.
Составные транзисторы применяются:
1. В мощных оконечных безтрансформаторных каскадах.
2. В интегральных микросхемах, где два транзистора удается выполнить без увеличения площади кристалла, в объеме одного транзистора.
Применение составных транзисторов в интегральных усилительных каскадах связано с особенностями интегральной технологии – n-p-n транзисторы достаточно просто формируются в одной изолированной области. Кроме того,
невозможно изготовить интегральные p-n-p транзисторы с высокими параметрами без усложнения технологического процесса. Сочетание интегральных p-n-p транзисторов с невысокими техническими параметрами с интегральными n-p-n транзисторами позволяет получить составные p-n-p транзисторы с достаточно высокими показателями.
... системах связи; выравнивания АЧХ малошумящих усилителей, входные каскады которых реализуются без применения цепей высокочастотной коррекции. На рис. 7.5,а приведена принципиальная схема усилителя с реактивной межкаскадной КЦ четвертого порядка, позволяющей реализовать заданный наклон АЧХ усилительного каскада, эквивалентная схема по переменному току приведена на рис. 7.5,б [14]. а) ...
... и как его измерить? 6. Что такое нагрузочная характеристика, как она снимается и какие параметры можно по ней определить? 7. Объясните работу параметрического стабилизатора. 8. В чем отличие работы диода в однополупериодной и двух-полупериодной мостовой схемах? 9. Чему равен угол отсечки при коротком замыкании нагрузки и при холостом ходе? Литература 1.Иванов-Цаганов А.И. Электротехнические ...
... Jсм1–Jсм2)/2, (3.1) отличие во входных токах смещения характеризуется справочными параметром Jр.=Jсм1–Jсм2. (3.1а) Влияние параметров Uсм, Jсм, Jр на работу усилительного каскада на ОУ зависит от схемы включения ОУ в усилителе. 3.2 Схемы включения ОУ Основными схемами включения ОУ являются инвертирующая, неинвертирующая, дифференциальная схемы. ...
ТОРНЫЙ КАСАКАД НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ Резисторные усилительные касакады широко применяются в различных областях радиотехники. Идеальный усилитель имеет равномерную АЧХ во всей полосе частот, реальный усилитель всегда имеет искажения АЧХ, прежде всего - снижение усиления на низких и высоких частотах, как показано на рис. 3.1. Рис.3.1. Схема резисторного усилителя переменного тока на ...
0 комментариев