1. Зона питания (I). Поступающие из бункера гранулы или порошок полимера заполняет межвитковое пространство шнека зоны I и уплотняется.

2. Зона пластикации и плавления (II). В зоне II происходит подплавление полимера, примыкающего к поверхности цилиндра. В тонком слое расплава полимера происходят интенсивные сдвиговые деформации, как следствие материал пластицируется, что приводит к интенсивному смесительному эффекту. Основной подъем давления P расплава происходит на границе зон I и II. На этой границе образующаяся пробка из спрессованного материала как бы скользит по шнеку: в зоне I это твердый материал, в зоне II- плавящийся. Наличие этой пробки и создает основной вклад в повышение давления расплава. Запасенное на выходе из цилиндра давление расходуется на преодоление сопротивления сеток, течения расплава в каналах головки и формования экструдируемого профиля.

3. Зона дозирования (III). Расплавленная масса полимера продолжает гомогенизироваться, однако она все еще не является однофазной и состоит из расплавленных и твердых частиц. В конце зоны III пластик становится полностью гомогенным и готовым к продавливанию через чистящие сетки и формующую головку.

2.3 Основные параметры процесса экструзии

К технологическим параметрам переработки пластмасс методом экструзии относятся:

· температура по зонам экструдера,

· давление расплава,

· температура зон головки,

· режимы охлаждения экструдированного профиля.

Основными технологическими характеристиками экструдера являются длина шнека L, диаметр шнека D, соотношение L/D, скорость вращения шнека N, а также профиль шнека и степень изменения объема канала шнека.

Основной характеристикой формующего инструмента, состоящего как правило из экструзионной головки (вместе с фильтрующими сетками) и калибрующего узла, является коэффициент сопротивления течению расплава K. Перепад давления на фильтрующих сетках служит показателем засорения, т. е. увеличения сопротивления сеток и, следовательно, сигналом к их замене.

Укрупненным показателем работы любого экструдера можно назвать его эффективность, измеряемую как отношение производительности экструдера к его потребляемой мощности [7, 8, 11].


3. Технологические параметры переработки (литья) термопластичных полимеров

Необходимо различать параметры процесса литья, задаваемые в системе управления термопластавтомата, термостата, и фактические параметры процесса, которые реализуются в литьевой машине и пресс-форме.

В первую очередь это связано с тем, что стадии процесса литья, определяемые системой управления литьевой машины, отличаются от стадий (или фаз) процесса, реализуемых для конкретной отливки.

Задаваемые параметры процесса зависят от особенностей системы управления литьевой машины.

Стадия загрузки (пластикации)
Частота вращения шнека / линейная скорость вращения шнека  
Противодавление (давление пластикации)  
Время загрузки / Положение шнека после загрузки Положение шнека после загрузки, доза расплава
Подсос (отвод шнека назад без вращения)  
  "Подушка" (крайнее переднее положение шнека)1
Стадия впрыска (заполнения)
Скорость впрыска / профиль скорости впрыска Фактическая скорость впрыска
Давление впрыска Изменение давления при впрыске
Переключение на выдержку под давлением Фактическое переключение на выдержку под давлением / время впрыска
Стадии выдержки под давлением (подпитки), выдержки на охлаждение
Давление выдержки (давление формования, давление подпитки) / профиль давления выдержки Изменение давления в полости формы при выдержке под давлением
Время выдержки под давлением Фактическое время выдержки под давлением
Время выдержки на охлаждение  
  Время цикла
Общие
Температура материального цилиндра Температура расплава
Температура нагревателей (для горячеканальных форм)  
Температура хладоагента / Температура формы (в точке контроля) Температура формующих поверхностей

1 - хотя "подушка" соответствует моменту окончания выдержки под давлением (подпитки), она регулируется изменением дозы расплава. Поэтому здесь она отнесена к стадии загрузки. [19-25]

3.1 Принципы качественного литья

3.1.1 Влияние конструкции изделия и пресс-формы на процесс уплотнения при литье термопластов

Стадия уплотнения (подпитки) оказывает большое влияние на качество изделия из термопластичного материала [20, 26.27] наряду с другими стадиями литьевого цикла. После окончания заполнения отливки в литьевой полости происходит нарастание давления за счет уменьшения перепадов давления в системе сопло-литник-изделие. В процессе уплотнения уменьшение объема охлаждаемого полимера частично компенсируется за счет подачи в литьевую полость дополнительного количества полимерного расплава под давлением. При недостаточном уплотнении на литьевом изделии появляются утяжки, внутренние усадочные полости, дефекты текстуры. Недостаточное и неравномерное уплотнение может приводить к короблению изделия.

Эффективным методом изучения процесса уплотнения при литье под давлением является конечноэлементный анализ [28-30]. В примерах, которые приводятся в данном докладе, моделирование процесса впрыска, уплотнения и охлаждения отливки проводилось в программном продукте MPI/Flow, а коробления – в программном продукте MPI/Warp компании Moldflow. Процесс литья моделируется в MPI/Flow как двумерное течение сжимаемого расплава в неизотермических условиях (модель Хеле-Шоу), с учетом основных факторов, влияющих на поведение полимера в литьевом канале (теплоперенос в пристенных слоях пресс-формы, диссипативное тепловыделение при течении, тепловые эффекты сжатия-растяжения расплава и др.). В отдельных случаях учитывались входовые эффекты. Расчеты проводились при симметричном равномерном охлаждении литьевой полости. Температуры расплава и формы соответствовали средним значениям рекомендуемого диапазона переработки полимера. Скорость впрыска выбиралась так, что изменения рассчитываемой температуры фронта расплава в изделии не превышали 1-3 °С.

 


Информация о работе «Технология переработки из расплавов аморфных и кристаллизующихся веществ»
Раздел: Химия
Количество знаков с пробелами: 80164
Количество таблиц: 3
Количество изображений: 9

Похожие работы

Скачать
74610
5
0

... на его основе, уникальное сочетание свойств изделий, возрастающий спрос потребителей стимулируют развитие технологии производства и переработки интеркалированного графита. Сейчас интеркалированный графит промышленно получают преимущественно по химической технологии, окисляя углеродное сырье в концентрированных серной или азотной кислотах. Для этого в H2SO4 вводят дополнительно окислитель (K2Cr2O7 ...

Скачать
67579
4
14

... проводили на лабораторном двухшнековом экструдере с диаметром шнека 30 мм, l/d = 25. Исследование механичеких свойств осуществляли в соответствии с ГОСТ на стандартных образцах, полученных литьем под давлением. Теплофизические свойства изучали методом ДСК при скорости нагрева 20 град/мин с использованием термоанализатора 990 ф. Дюпон. Кинетику поглощения бензина и воды осуществляли на дисках ...

Скачать
91203
0
0

... были обнаружены в парах. Известен ряд двойных карбидов галлия различного состава с марганцем, железом, платиной, ниобием, хромом и некоторыми другими металлами. Соединения галлия с кремнием и бором не получены. 6. ОСОБЫЕ СВОЙСТВА ЭЛЕМЕНТА И ЕГО СОЕДИНЕНИЙ, ИХ ПРИМЕНЕНИЕ. Не стоит брать этот элемент в руки - тепла человеческого тела достаточно, чтобы этот серебристый мягкий (его можно резать ...

Скачать
40968
3
0

... Это марки базового ассортимента. Марки по вязкости модифицируют для улучшения технологических свойств: а) для увеличения производительности создают быстрокристаллизирующиеся марки; б) для изделий сложной конфигурации - марки со смазками; в) термостабилизированные марки. На основе базового ассортимента марок по технологическим свойствам создают путем химической или ...

0 комментариев


Наверх