Государственный комитет РФ по народному образованию.
Ковалев В. Г.
Основы технологии изготовления деталей из пластмасс.
Учебное пособие по курсу “Технология приборостроения”
Москва,1998
Содержание
1. Введение .......................................................................................... 3
2. Физико-химические основы строения полимеров .................... .... 4
2.1. Строение полимеров ..................................................................... 4
2.2. Свойства полимеров ...................................................................... 5
2.3. Пластические массы ..................................................................... 8
2.3.1. Классификация пластмасс ......................................................... 8
2.3.2.Технологические свойства ........................................................ 10
2.3.3. Физико-химические основы переработки ............................... 11
2.3.4. Марочный ассортимент ............................................................ 14
3. Выбор пластмасс ............................................................................ 15
3.1. Признаки выбора ......................................................................... 15
3.2.Порядок выбора и алгоритм выбора ............................................ 15
4. Способы изготовления деталей из пластмасс ............................... 20
4.1.Классификация способов ............................................................. 20
4.2. Способы горячего формования .................................................. 20
4.2.1. Подготовка полимеров к переработке ..................................... 21
4.2.2. Особенности формования аморфных полимеров .................... 23
4.2.3. Особенности формования кристаллизующихся полимеров ... 24
4.2.4. Температурно-временная область переработки ...................... 26
4.2.5. Технологическая характеристика способов
горячего формования ..........................................................................27
4.3. Способы механической обработки ............................................. 33
4.3.1. Особенности обработки ........................................................... 34
4.3.2. Технологическая характеристика способов обработки........... 35
5. Выбор способа изготовления детали ............................................. 37
6. Технологичность конструкции детали …....................................... 38
Задания для самоконтроля ................................................................. 55
В работе представлены физико-химические основы строения, классификация, свойства, выбор пластмасс и способы переработки; представлены также технологические особенности горячего формования и механической обработки пластмасс. Для выбора материала и способа переработки приведены алгоритмы.
Весь материал в работе изложен с учетом новейших достижений в области строения, классификации и особенностей переработки пластмасс.
Учебное пособие предназначено для самостоятельного изучения раздела ТПС “Основы технологии изготовления деталей из пластмасс” студентами приборостроительных специальностей МГТУ им. Н.Э. Баумана.
1.Введение.
Пластмассы - материалы на основе органических природных, синтетических или органических полимеров, из которых можно после нагрева и приложения давления формовать изделия сложной конфигурации. Полимеры - это высоко молекулярные соединения, состоящие из длинных молекул с большим количеством одинаковых группировок атомов, соединенных химическими связями. Кроме полимера в пластмассе могут быть некоторые добавки.
Переработка пластмасс - это совокупность технологических процессов, обеспечивающих получение изделий - деталей с заданными конфигурацией, точностью и эксплуатационными свойствами.
Высокое качество изделия будет достигнуто, если выбранные материал и технологический процесс будут удовлетворять заданным эксплуатационным требованиям изделия: электрической и механической прочности, диэлектрической проницаемости, тангенсу угла диэлектрических потерь, прочности, плотности и т.п. Эти требования должны быть учтены при создании элементной базы (микросхем, микросборок и т.п.) и элементов базовых несущих конструкций (БНК), печатных плат, панелей, рам, стоек, каркасов и др.
При переработки пластмасс в условиях массового производства для обеспечения высокого качества изделий решают материаловедческие, технологические, научно-организационные и другие задачи.
Материаловедческие задачи состоят в правильном выборе типа и марки полимера, таким образом, чтобы обеспечить возможность формования изделия с заданными конфигурацией и эксплуатационными свойствами.
Технологические задачи включают в себя всю совокупность вопросов технологии переработки полимеров, обеспечивающих качество изделия: подготовку полимеров к формованию, разработку-определение технологических параметров формования, разработку инструмента, выбор оборудования.
Основные этапы работы по применению пластмасс в изделиях следующие:
1. Анализ условий работы изделия, разработка требований к эксплуатационным свойствам.
2. Выбор вида пластмассы по заданным требованиям и эксплуатационным свойствам изделия.
3. Выбор способа переработки пластмассы в изделие и оборудования.
4. Выбор базовой марки пластмассы и на её основе марки с улучшенными технологическими свойствами.
5. Конструирование, изготовление, испытание и отладка технологической оснастки и др.
2. Физико-химические основы строения.
2.1. Структура полимеров.
Полимеры состоят из повторяющихся групп атомов - звеньев исходного вещества - мономера, образующих молекулы в тысячи раз превышающих длину неполимерных соединений, такие молекулы называют макромолекулами. Чем больше звеньев в макромолекуле полимера (больше степень полимеризации), тем более прочен материал и более стоек к действию нагрева и растворителей. Из-за невозможности эффективной переработки малоплавкого и труднорастворимого полимера в ряде случаев получают сначала полуфабрикаты - полимеры со сравнительно низкой молекулярной массой - олигомеры, легко доводимые до высоко молекулярного уровня при дополнительной тепловой обработке одновременно с изготовлением изделия.
В зависимости от состава различают группы полимерных соединений: гомополимеры - полимеры, состоящие из одинаковых звеньев мономеров; сополимеры - полимеры, состоящие из разных исходных звеньев мономеров; элементоорганические - соединения с введен-ными в главную цепь или боковые цепи атомами кремния (кремнийорганические соединения), бора алюминия и др. Эти соединения обладают повышенной теплостойкостью.
Форма молекул может быть: линейная неразветвленная (рис. 1, а), допускающая плотную упаковку; разветвленную (рис. 1, б), труднее упаковываемая и дающая рыхлую структуру; сшитая - лестничная (рис. 1, в), сетчатая (рис. 1, г), паркетная (рис. 1, д), сшитая трехмерно-объемная (рис. 1, е), с густой сеткой поперечных химических связей.
У органических полимерных материалов макроструктура образована либо свернутыми в клубки (глобулы) гибкими макромолекулами, либо пачками-ламелями более жестких макромолекул, параллельно уложенных в несколько рядов (рис. 2, а), так как в этом случае они имеют термодинамически более выгодную форму, при которой значительная часть боковой поверхности прилегает друг к другу. На участках складывания образуются домены, а домены создают фибриллы, связанные проходными участками (рис. 2, б). Несколько доменов, соединяясь по плоскостям складывания, образуют первичные структурные элементы - кристаллы, из которых при охлаждении расплава возникают пластинчатые структуры - ламели. В процессе складывания ламелей концы молекул могут находиться в разных плоскостях; иногда эти концы молекул частично возвращаются в начальную плоскость - в этом случае они создают петли (рис. 3).
... пленок адсорбированного газа, играющих роль своеобразной смазки. Когда такие пленки не образуются, коэффициент трения возрастает и достигает 0.5-0.55. Низкий коэффициент трения обуславливает исключительную износостойкость алмаза на истирание, которая превышает износостойкость корунда в 90 раз, а других абразивных материалов - в сотни и тысячи раз. В результате, например, при шлифовании изделий из ...
0 комментариев